Refine Your Search

Topic

Search Results

Technical Paper

Research on Cooperative Adaptive Cruise Control (CACC) Based on Fuzzy PID Algorithm

2023-04-11
2023-01-0682
For cooperative adaptive cruise control (CACC) system, a robust following control algorithm based on fuzzy PID principle is adopted in this paper. Firstly, a nonlinear vehicle dynamics model considering the lag of driving force and acceleration constraints was established. Then, with the vehicle’s control hierarchic, the upper controller takes the relative speed between vehicles and the spacing error as inputs to output the following vehicle's target acceleration, while the lower controller takes the target acceleration as inputs and the throttle opening and brake master cylinder pressure as outputs. For the setting of target spacing, this paper additionally considers the relative speed between vehicles and the acceleration of the front vehicle. Through testing, compared with the traditional variable safety distance model, the average distance reduces by 5.43% when leading vehicle is accelerating, while increases by 2.74% in deceleration.
Technical Paper

Vehicle Feature Recognition Method Based on Image Semantic Segmentation

2022-03-29
2022-01-0144
In the process of truck overload and over-limit detection, it is necessary to detect the characteristics of the vehicle's size, type, and wheel number. In addition, in some vehicle vision-based load recognition systems, the vehicle load can be calculated by detecting the vibration frequency of specific parts of the vehicle or the change in the length of the suspension during the vehicle's forward process. Therefore, it is essential to quickly and accurately identify vehicle features through the camera. This paper proposes a vehicle feature recognition method based on image semantic segmentation and Python, which can identify the length, height, number of wheels and vibration frequency at specific parts of the vehicle based on the vehicle driving video captured by the roadside camera.
Technical Paper

Research on Brake Pad Particle Emissions and Temperature Reduction of a Brake Disc in Air Controlling System

2022-03-29
2022-01-0330
This paper addresses the brake pad particle emission during the braking process of a vehicle in motion. The frictional-constant contact between the disc brake and pads results in an increased temperature and wear of the pads. The emission of brake pad particles into the atmosphere leads to an increase in air pollution and hence becomes hazardous to the human body. In this paper, a wheel brake disc is installed in a ventilation system where the specific air flow is introduced in order to investigate the thermal performance and the emission of particles from the brake pads. A mathematical model using the fundamental parameters of the brake disc and ventilation system is established. The behavior of the heat transfer is studied using computational fluid dynamics (CFD). The particle emission rate from the pads is calculated under the assumption of uniform constant pressure distribution at the contact surface of the brake disc and pad.
Technical Paper

Research on the Dual-Motor Coupling Power System Strategy of Electric Sweeping Vehicle

2022-03-29
2022-01-0673
The sweeping vehicle has made a great contribution to the cleaning of urban roads. The traditional electric sweeping vehicle uses the main and auxiliary motors to drive the driving system and the operating system respectively. However, because the sweeper is in a low-speed working condition for a long time, and the drive motor must meet the demand for high power, there exist problems of low motor utilization and high cost. Aiming at this phenomenon, a dual-motor power coupling system based on planetary gears is proposed. First, analyze the driving mode of the dual-motor coupling power system according to the actual working scheme of the sweeper, and match the parameters of the motor based on this. Second, on the premise of meeting the power requirements, analyze and divide the working range of each drive mode based on the principle of minimum energy consumption, and then obtain the best drive mode switching control and speed and torque distribution strategy.
Technical Paper

Measurement and Evaluation of the Conversion of Thermal Energy Generated on the Contact Surface of the Brake Disc into Electrical Energy Using a Thermoelectric Generator

2022-03-29
2022-01-0188
Heat generated by friction between the brake discs and the brake pad causes the disc temperature to rise, which affects the braking performance. This flux generated from the contact surface of the vehicle brake disc not only affects the braking performance but also tends to be wasted and pollutes the environment. However, an accurate system is needed to make efficient use of this generated heat flux, which is usually wasted. Thermoelectric generators (TEGs) are solid-state gadgets utilized in the conversion of heat to electricity. Hence, the aim of this study is to convert the heat flux generated at the disc contact surface into electrical energy by employing a thermoelectric generator. In Addition, the energy harvested energy to power the battery, which in turn charges the temperature monitoring systems. Thermoelectric generators were positioned at different geometrical points of the brake discs to achieve optimal efficiency and energy storage possibilities.
Technical Paper

Analytical Modeling and Multi-Objective Optimization of the Articulated Vehicle Steering System

2022-03-29
2022-01-0879
The articulated steering system is widely used in engineering vehicles due to its high mobility and low steering radius. The design parameters have a vital impact on the selection of the steering system assemblies, such as the operation stroke, pressure, and force of the hydraulic cylinders during the steering process, which will affect the system weight. The system energy consumption is also relevant to the geometry parameters. According to the kinetic analysis of the steering system and dynamic analysis of the steering process, the kinetic model of an engineering vehicle steering system is built, and the length and pressure variation of the cylinder is calculated and validated by the field test. The influence of the factors is analyzed based on the established model. To lower the system weight, needed pressure, and force, the multi-objective particle swarm optimization method is initiated to optimize the geometry parameter of the articulated steering system.
Technical Paper

Parameter Optimization of Steering Trapezoid Mechanism Based on Hybrid Genetic Algorithm

2021-04-06
2021-01-0845
Optimization of the steering trapezoid mechanism parameter has great significance for improving vehicular handling performance and steering safety. The mathematical model of the current trapezoid mechanism design is oversimplified; Thus, the value of the optimum parameter is often not achievable. In this paper, a design model for the trapezoidal steering mechanism is proposed taking into consideration the size and kinematic constraints. Based on combining Ackerman's principle and spatial geometric relation, a multi-body dynamics design method is used to derive a nonlinear optimization model of the split steering trapezoid mechanism. In this investigation, a hybrid genetic algorithm is developed to minimize the steering error and the corresponding optimum design parameters. The selected design parameters are the bottom angle and the steering arm length of steering trapezoid mechanisms.
Technical Paper

Analysis of Alcohol-Impaired Driving on Vehicle Dynamic Control of Steering, Braking and Acceleration Behaviors in Female Drivers

2021-04-06
2021-01-0859
Road traffic accidents resulting from alcohol-impaired driving are increasing globally despite several measures, currently in place, to curb the trend. For this reason, recent research aims at integrating alcohol early-detection systems and driving simulator experiments to identify intoxicated drivers. However, driving simulator experiments on drunk driving have focused mostly on male participants than female drivers whose characteristics have scarcely been explored. Hence in this paper, vehicle dynamic control inputs on steering, braking, and acceleration performance of 75 licensed female drivers with an upshot of alcohol at four different blood alcohol concentration (BAC) levels (0%, 0.03%, 0.05%, and 0.08%) were investigated. The participants completed simulated driving in a fixed-based simulator experiment coupled with real-time ecological scenarios to extract discrete responses.
Technical Paper

Prediction of Road Slope Ahead of Vehicles Based on Data Fusion and Data Mining

2021-04-06
2021-01-0910
Heavy commercial vehicle drivers may frequently shift gears when they are running on long and downhill roads in mountainous area. In order to improve driving safety and fuel economy, it is necessary to predict the slope of the road ahead in real time and correct the driver's shift strategy in time. At present, the road slope estimation is mainly based on the real-time estimation of the road slope at the current position of the vehicle based on the vehicle driving information obtained by the sensors, but the road slope of the road section that the vehicle is about to reach has not been predicted. In this paper, based on the road slope information of the road section that the driver has driven through, combined with Geographic Information System (GIS) information and road design standards, the slope of the road section ahead is predicted.
Technical Paper

Modeling Ventilation System for Minimizing Temperature Amount of the Heat on the Contact Surface of the Brake Disc

2021-04-06
2021-01-0295
When driving a vehicle, reliable braking system ensures maximum human safety. Increasing vehicle speed under driving conditions generate heat due to the friction between rotating disc and pads. Elevated temperatures accelerate brake disc contact surface thermal deformation and shortens the service life. The particles formed as a result of high temperature and friction coefficient on the contact surface of the brake disc must not be emitted into the atmosphere. The ventilation system ensures that particles do not escape into the atmosphere by installing a car air filter system in the outdoor air flow duct. Minimizing the amount of heat and temperature on the contact surface of the brake disc in the ventilation system leads to an increase in the service life of the brake disc. The present research is essentially dealing with the modeling and analysis of solid and ventilated disc brake using ventilation system test rig.
Technical Paper

A Vehicle Dimensions Dynamic Detection Method Based on Image Recognition

2021-04-06
2021-01-0167
The acquisition of vehicle dimensions in a vehicle’s moving process has a wide application in road monitoring, transportation, vehicle model recognition and non-contact overload recognition. At present, the detection of the vehicle dimensions mostly adopts the methods of human visual inspection and tool detection, which has a low detection efficiency and difficult to replicate on a large scale. Based on the image background subtraction method, this paper proposes a vehicle dimensions detection method, which can realize real-time detection of road vehicle dimensions. This method uses an adaptive Gaussian Mixture Model (GMM) to establish a background model based on the video stream. Initially, the moving target image is obtained by the background subtraction method, and then the edge detection under the Canny operator and Hough transform circle detection are performed on the image to obtain the pixel dimension of the vehicle's outline.
Technical Paper

Research on Heat Management Performance of Heat Pipe-Fin Based on Optimal Design

2021-04-06
2021-01-0752
As one of the core components of electric vehicle, the performance of power battery is largely determined by thermal management system. Air cooling is difficult to meet the heat dissipation requirements of high-power power batteries. Liquid cooling arrangement is complex and requires high sealing performance. Phase change materials will increase the mass of battery packs. Heat pipes have good heat conduction, temperature equalization performance and light weight, and it is an ideal cooling and heat dissipation technology with efficient cooling fins. In this paper, a thermal management system of power battery based on heat pipe and fin is proposed. The maximum temperature and wall temperature difference of power battery are reduced by heat pipe and fin heat dissipation. The influence of different fin spacing and heights on the thermal management system is studied, and then the fin spacing and height are optimized.
Technical Paper

Research on the Performance of Battery Thermal Management System Based on Optimized Arrangement of Flat Plate Heat Pipes

2020-04-14
2020-01-0162
The thermal management system is essential for the safe and long-term operation of the power battery. The temperature difference between the individual cells exceeds the acceleration of the battery performance, which leads to battery out of use and affects the performance of the vehicle. Compared with the low heat transfer coefficient of the air-cooling system, the complex structure of the liquid-cooling system and the large quality of phase change material system, the heat pipe has high thermal conductivity, strong isothermal performance and light weight, it’s an efficient cooling element that can be used for thermal management. In this study, the flat plate heat pipe(FPHP) is used to manage the temperature of the battery, through experiments, the optimized placement of the flat heat pipe is obtained.
Technical Paper

Parameter Optimization of Anti-Roll Bar Based on Stiffness

2020-04-14
2020-01-0921
The anti-roll bar is an important structural component of the automobile, which can effectively prevent the automobile from rolling and improve the safety of the automobile during steering. In the design of the current anti-roll bar, the stiffness is determined by empirical or oversimplified mathematical models, often not reaching the optimal value. In this paper, eight parameters are used to determine the structure of the anti-roll bar. Combining the Deformation Energy theorem and Castigliano’s theorem, a mathematical model of the stiffness is established. The optimal solution and corresponding parameter values of the mathematical model are obtained by nonlinear programming and genetic algorithm. The influence of structural parameters on the anti-roll bar stiffness is analyzed, and the regular pattern of design is obtained. In addition, the finite element method is used to verify the stiffness solution model.
Technical Paper

An Image Recognition Application Method for Vertical Movement of Vehicles

2020-04-14
2020-01-0733
In ITS, image processing technology is applied to a wide variety of areas such as visual-based intelligent vehicle navigation, visual-based traffic monitoring and visual-based traffic management. In the recognition system of the vehicle body characteristics, most of the recognition is the license plate and the car emblem, etc. This paper proposes an image recognition application method for the vertical motion of the car while driving, mainly including vertical height detection and vertical displacement velocity acceleration recognition. The edge detection model of the image object is established by using the gray image to obtain the car motion segmentation image. At the same time, an image length and actual length coordinate conversion model is established, which can calculate an arbitrary actual length of the image object. In this paper, Yuejin Shangjun X500 van was selected as the test vehicle, and the video data was captured with a camera.
Technical Paper

Effect of Stator Surface Area on Braking Torque and Wall Heat Dissipation of Magnetorheological Fluid Retarder

2020-04-14
2020-01-0937
Magnetorheological fluid (MRF) is used as the transmission medium of the hydraulic retarder. The rheological properties are regulated by changing the magnetic field to achieve accurate control of the retarder's braking torque. Under the action of the external magnetic field, the flow structure and performance of the MRF retarder will be changed in a short time. The apparent viscosity coefficient increases by several orders of magnitude, the fluidity deteriorates and the heat generated by the brake cannot be transferred through the liquid circulation, which will affect the braking torque of the retarder. Changing the surface area of the stator also has an influence on the braking torque of the retarder and the wall heat dissipation. In this study, the relationship between the braking torque of the MRF retarder and the stator surface area of the retarder was analyzed.
Technical Paper

Research on the Best Driving Speed of the Deceleration Bump

2020-04-14
2020-01-1088
The ride performance and stability of the vehicle will decrease while the vehicle passing a deceleration bump with relatively high speed. If the speed is too low, the road efficiency and ride comfort will be affected. It is essential to identify the proper speed taking into account all the factors. In this paper, the dynamic model of the vehicle passing through the deceleration bump is established. Three kinds of indicators vibration weighted acceleration RMS, maximum vertical vibration acceleration and wheel load impact coefficient, are used to comprehensively evaluate the ride comfort and safety. The highway model, vehicle model, and common trapezoidal cross-sections bump models are set up in Carsim. Parameters such as vertical acceleration and tire force at different vehicle speeds are obtained. Then use the spline interpolation method to fit the data, and comprehensively consider the three indicators to get the best speed.
Technical Paper

Downhill Safety Assistant Driving System for Battery Electric Vehicles on Mountain Roads

2019-09-15
2019-01-2129
When driving in mountainous areas, vehicles often encounter downhill conditions. To ensure safe driving, it is necessary to control the speed of vehicles. For internal combustion engine vehicles, auxiliary brake such as engine brake can be used to alleviate the thermal load caused by the continuous braking of the friction brake. For battery electric vehicles (BEVs), regenerative braking can be used as auxiliary braking to improve brake safety. And through regenerative braking, energy can be partly converted into electrical energy and stored in accumulators (such as power batteries and supercapacitors), thus extending the mileage. However, the driver's line of sight in the mountains is limited, resulting in a certain degree of blindness in driving, so it is impossible to fully guarantee the safety and energy saving of downhill driving.
Technical Paper

Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber

2018-04-03
2018-01-0582
The current paper proposes a hydraulic interconnected suspension system (HIS) based on a hydraulic energy-regenerative shock absorber (HESA) comparatively with the passive suspensions. The structure and working principles of the HIS system are introduced in order to investigate the damping performance and energy regeneration characteristics of the proposed system. Then, the dynamic characteristics of the HIS-HESA system have been investigated based on a 4-DOF longitudinal half vehicle model. In the simulation, two different road inputs were used in the dynamic characterization of the HIS-HESA; the warp sinusoidal excitation, and the random road signal. In addition, a comparative analysis was provided for the dynamic responses of the half vehicle model for both the HIS-HESA and the conventional suspension. Furthermore, a parametric analysis of the HIS-HESA has been carried out highlining the key parameters that have a remarkable effect on the HIS-HESA performance.
Technical Paper

Temperature Control Characteristics of Automotive Power Battery Based on R-1233zd(E)’s Flowing Phase Change Heat Transfer

2018-04-03
2018-01-1191
Li-ion power battery is the core component of the electric vehicle power system, and the battery temperature will increase because of the electrochemical reaction of the Li-ion battery. The heat accumulates inside of the battery, which can degrade the working performance of the power battery and shorten the battery cycle life. At present, the wind cooling technology is relatively mature. However, it cannot achieve ideal heat dissipation effect under the working conditions of the high-power or high ambient temperature. In this research, the battery thermal management is carried out by the characteristics of the working fluid’s flowing phase change heat transfer. The phase change working fluid is R-1233zd(E) which is a kind of environmentally friendly liquid with nonconductive and nonflammable. It can achieve the purpose of controlling the battery’s temperature using the characteristics of isothermal heat absorption under different gas phase rate of phase change working fluid.
X