Refine Your Search

Topic

Search Results

Technical Paper

Turbocharging Automotive Engines: A Decision-Making Approach for Optimal Turbocharger Selection

2023-08-28
2023-24-0003
An approach for turbocharging automotive engines to reach targeted performance was developed in which the environmental and economic aspects during the turbocharger-engine matching process were considered. Three numerical assessment levels based on output performance, exhaust emissions and techno-economic metrics are established to support users during the decision-making of adequate turbochargers that meets targeted data in terms of boosting and emissions. Satisfactory improvements are measured from a 1.5L, three-cylinders, turbocharged Diesel engine, in terms of brake specific fuel consumption, thermal efficiency and NOx concentrations of about 1.73% (decrease in fuel consumption of around 2.22ml/s), 1.76%, and 4.53% (correspond to a diminution of around 217.54ppm), respectively, at the engine’s extreme conditions (full load and rated power).
Technical Paper

On the Potential of Transfer Port Injection Strategies for a Two-Stroke Engine

2022-01-09
2022-32-0057
The main drawback of an in-cylinder Low Pressure Direct Injection (LPDI) in a two-stroke engine is the difficulty of achieving a satisfactory vaporization level in low load conditions. The liquid droplets are characterized by large diameters and, when the temperature level and the velocity of the scavenging flow field are low, the time needed for the droplet vaporization and the homogenization with fresh air becomes too long to guarantee a suitable mixture formation. A transfer port injection allows a higher flexibility, due to the possibility of performing a mixed injection either directly in the cylinder or indirectly in the crank case, depending on the load request or engine speed. Also, an even lower injection pressure can be adopted with respect to an in-cylinder LPDI injection, which is relevant in case of lightweight and low power applications. On the other hand, the time available for the direct in-cylinder injection is limited to the scavenge phase.
Technical Paper

Experimental Analysis on the Effects of Passive Prechambers on a Small 2-Stroke Low-Pressure Direct Injection (LPDI) Engine

2020-11-30
2020-32-2305
Two-stroke (2S) engines still play a key role in the global internal combustion engine (ICE) market when high power density, low production costs, and limited size and weight are required. However, they suffer from low efficiency and high levels of pollutant emissions, both linked to the short circuit of fuel and lubricating oil. Low- and high-pressure direct injection systems have proved to be effective in the reduction of fuel short circuiting, thus decreasing unburnt hydrocarbons and improving engine efficiency. However, the narrow time window available for fuel to be injected and homogenized with air, limited to few crank-angles, leads to insufficiently homogenized fuel-air mixtures and, as a consequence, to incomplete combustions. The use of prechambers can be a well-suited solution to avoid these issues.
Journal Article

Intermittent Injection for a Two-Stroke Direct Injection Engine

2020-01-24
2019-32-0524
Cycle-to-cycle variation is one of the main factors for high fuel consumption and emissions of a two-stroke engine during the low-load and low-speed running. The increase of residual gas ratio due to the lower delivered amount of fresh scavenging air leads to a lower flame front speed and, therefore, to a slow combustion or even misfiring. The consequence is a very high level of unburnt hydrocarbons, since a large amount of fuel does not take part in the combustion process. The use of a direct injection system allows a more flexible management of the injection of fuel over subsequent engine cycles. Under a low-load condition, the low request in terms of brake mean effective pressure (BMEP) can be achieved by performing a load control based on an intermittent injection, thus reducing the need for intake throttling and avoiding the loss of fresh fuel resulting from cycles without combustion.
Technical Paper

A Pre-Design Model to Estimate the Effect of Variable Inlet Guide Vanes on the Performance Map of a Centrifugal Compressor for Automotive Applications

2017-09-04
2017-24-0020
The onset of aerodynamic instabilities in proximity of the left margin of the operating curve represents one of the main limitations for centrifugal compressors in turbocharging applications. An anticipated stall/surge onset is indeed particularly detrimental at those high boost pressures that are typical of engine downsizing applications using a turbocharger. Several stabilization techniques have been investigated so far to increase the rangeability of the compressor without excessively reducing the efficiency. One of the most exploited solutions is represented by the use of upstream axial variable inlet guide vanes (VIGV) to impart a pre-whirl angle to the inlet flow. In the pre-design phase of a new stage or when selecting, for example, an existing unit from an industrial catalogue, it is however not easy to get a prompt estimation of the attended modifications induced by the VIGV on the performance map of the compressor. A simplified model to this end is presented in the study.
Technical Paper

Analysis of the Turbocharger Speed to Estimate the Cylinder-to-Cylinder Injection Variations - Part 2 - Frequency Domain Analysis

2016-11-08
2016-32-0085
For the development of a very high efficiency engine, the continuous monitoring of the engine operating conditions is needed. Moreover, the early detection of engine faults is fundamental in order to take appropriate corrective actions and avoid malfunctioning and failures. The in-cylinder pressure is the most direct parameter associated to the engine thermodynamic cycle. The cost and the intrusiveness of the dynamic pressure sensor and the harsh operating condition that limits its life-time, make the direct measurement of the in-cylinder pressure not suitable for mass production applications. Consequently, research is oriented on the measurement of physical phenomena linked to the thermodynamic cycle to obtain useful information for the ICE control.
Technical Paper

Analysis of the Turbocharger Speed to Estimate the Cylinder-to-Cylinder Injection Variations - Part 1 - Time Domain Analysis

2016-11-08
2016-32-0081
For the development of a very high efficiency engine, the continuous monitoring of the engine operating conditions is needed. Moreover, the early detection of engine faults is fundamental in order to take appropriate corrective actions and avoid malfunctioning and failures. The in-cylinder pressure is the most direct parameter associated to the engine thermodynamic cycle. The cost and the intrusiveness of the dynamic pressure sensor and the harsh operating condition that limits its life-time, make the direct measurement of the in-cylinder pressure not suitable for mass production applications. Consequently, research is oriented on the measurement of physical phenomena linked to the thermodynamic cycle to obtain useful information for the ICE control.
Technical Paper

Experimental Acoustic Analysis of a Motorcycle Dissipative Muffler in Presence of Mean Flow

2016-11-08
2016-32-0039
In recent years, the motorcycle muffler design is moving to dissipative silencer architectures. Due to the increased of restrictions on noise emissions, both dissipative and coupled reactive-dissipative mufflers have substituted the most widely used reactive silencers. This led to higher noise efficiency of the muffler and size reduction. A dissipative muffler is composed by a perforated pipe that crosses a cavity volume filled by a fibrous porous material. The acoustic performance of this kind of muffler are strictly dependent on the porosity of the perforated pipe and the flow resistivity characteristic of the porous material. However, while the acoustic performance of a reactive muffler is almost independent from the presence of a mean flow for typical Mach numbers of exhaust gases, in a dissipative muffler the acoustic behaviour is strictly linked to the mass flow rate intensity.
Technical Paper

Indirect Estimation of In-Cylinder Pressure through the Stress Analysis of an Engine Stud

2016-04-05
2016-01-0814
The increase of performance has always been a key topic of the research activities on the internal combustion engines. Nowadays this is even truer as the performance is strictly correlated to the pollutant emissions. In this sense, an interesting approach could be the improvement of the effectiveness of engine control system and optimize the combustion process. To pursue this goal it would be very important to know the in-cylinder pressure during engine operation. The measurement of this quantity is performed generally with a pressure sensor flush mounted on the cylinder head. The measurement is very accurate, but the severe ambient conditions strongly limit the lifetime of these sensors, which, therefore, are not well suited to act as a feedback to the control system of on-road engines. Even though several approaches to measure indirectly the in-cylinder pressure have been developed, their diffusion is still hampered by reliability and sturdiness problems.
Technical Paper

Detection of Cylinder-to-Cylinder Injection Variation in a Four-Stroke Diesel Engine by Monitoring the Turbocharger Speed

2015-11-17
2015-32-0761
In order to ensure a high level of performance and to comply with more severe limitations in term of fuel consumption and emissions reduction, a continuous supervision of the engine operating conditions, by monitoring several parameters, is needed. The growing use of turbocharger (TC) in ICE for automotive and industrial applications suggests to use the TC speed as a possible feedback of engine operating condition. Indeed, the turbocharger behavior is connected to the thermo-dynamic and fluid-dynamic conditions at the engine cylinder exit: this feature suggests that the turbocharger speed could give useful information about the engine cycle. In previous studies, a preliminary investigation of the relationship between the engine performance and the turbocharger speed of a four-stroke multi-cylinder turbo-diesel engine was carried out by varying the operating conditions of the engine such as fuel mass flow rate, EGR rate and back pressure at the turbine outlet.
Technical Paper

An Experimental Methodology for the Evaluation of the Trapped Air-Fuel Ratio of a Small 2S LPDI Engine

2015-11-17
2015-32-0762
A typical issue of the two-stroke engine in monitoring the combustion process is to measure the actual burning mixture with a conventional 02-sensor placed in the exhaust duct. In fact, the short circuit of fresh charge affects the correct acquisition of the residual oxygen associated to the completeness of the combustion process, leading to the overestimation of the trapped air-fuel ratio. In a conventional homogenously scavenged two-stroke engine, a possible solution to the aforementioned issue is the direct measurement of the mass flow rate of both the intake fresh air and the fuel delivered by the fuel supply system. This methodology cannot be applied to 2S direct injection engine because air and fuel are not premixed. The paper shows the application of a methodology for the evaluation of the trapped air-fuel ratio of the mixture inside the combustion chamber in a small two-stroke low pressure direct injection (LPDI) engine.
Journal Article

Experimental and Numerical Comparison of the Acoustic Performance of the Air Filter Box of a SI-ICE

2015-09-06
2015-24-2527
In an Internal Combustion Engine, the design of the intake system is a very critical aspect since it affects both the engine power output and noise emissions at the intake side. In particular, downsized VVA engines typically produce higher gas-dynamic noise levels since, due to the intake line de-throttling at part-load, a less effective attenuation of the pressure waves is realized. In this work, the acoustic performance of the intake air filter of a commercial VVA engine is numerically and experimentally analyzed. In particular, a FEM model of the system is realized in order to compute the Transmission Loss (TL) parameter of the base device. The numerical analysis accounts of fluid-structure interaction, which gives the possibility to determine the effect of structure participation on the TL profile. Contemporarily, the experimental tests are performed on an acoustic test bench based on the multi-microphone technique for the evaluation of the acoustic parameters.
Journal Article

Experimental Acoustic Characterization of Double-Inlet and Single-Outlet Muffler

2015-06-15
2015-01-2315
The acoustic performance of mufflers with single-inlet and single-outlet are well described using Insertion Loss (IL) and Transmission Loss (TL). These parameters represent the acoustic damping on the engine emission and on the incident pressure wave respectively. However, for mufflers with multi-inlet these parameters depend also on the sources characteristics, as consequence their use is quite difficult. In the present work the acoustic performance of a double-inlet and single-outlet muffler are experimentally evaluated in terms of reflection and transmission coefficients of each port of the muffler itself. These coefficients are used to evaluate the Insertion Loss of the manifold muffler taking into account specific sources on the inlets. The characteristic coefficients are also used to predict the acoustic emission of the manifold muffler using a known engine source on the two inlets.
Journal Article

Development of a Low Pressure Direct Injection System for a Small 2S Engine. Part I - CFD Analysis of the Injection Process

2015-04-14
2015-01-1727
High specific fuel consumption and pollutant emissions are the main drawbacks of the small crankcase-scavenged two-stroke engine. The symmetrical port timing combined with a carburetor or an indirect injection system leads to a lower scavenging efficiency than a four-stroke engine and to the short-circuit of fresh air-fuel mixture. The use of fuel supply systems as the indirect injection and the carburetor is the standard solution for small two-stroke engine equipment, due to the necessity of reducing the complexity, weight, overall dimensions and costs. This paper presents the results of a detailed study on the application of an innovative Low Pressure Direct Injection system (LPDI) on an existing 300 cm3 cylinder formerly equipped with a carburetor. The proposed solution is characterized by two injectors working at 5 bar of injection pressure.
Technical Paper

Development of a Low Pressure Direct Injection System for a Small 2S Engine. Part II - Experimental Analysis of the Engine Performance and Pollutant Emissions

2015-04-14
2015-01-1730
High specific fuel consumption and pollutant emissions are the main drawbacks of the small crankcase-scavenged two-stroke engine. The symmetrical port timing combined with a carburetor or an indirect injection system leads to a lower scavenging efficiency than a four-stroke engine and to the short-circuit of fresh air-fuel mixture. The use of fuel supply systems as the indirect injection and the carburetor is the standard solution for small two-stroke engine equipment, due to the necessity of reducing the complexity, weight, overall dimensions and costs. This paper presents the results of a detailed study on the application of an innovative Low Pressure Direct Injection system (LPDI) on an existing 300 cm3 cylinder formerly equipped with a carburetor. The proposed solution is characterized by two injectors working at 5 bar of injection pressure.
Journal Article

Numerical Investigation of the Relationship between Engine Performance and Turbocharger Speed of a Four Stroke Diesel Engine

2014-11-11
2014-32-0126
A condition monitoring activity consists in the analysis of several information from the engine and the subsequent data elaboration to assess its operating condition. By means of a continuous supervision of the operating conditions the internal combustion engine performance can be maintained at design-level in the long term. The growing use of turbocharger (TC) in automotive field suggests to use the TC speed as a possible feedback of engine operating condition. Indeed, the turbocharger behavior is influenced by the thermo and fluid-dynamic conditions in the cylinder exhaust port: this feature suggests that the TC speed could provide useful data about the engine cycle. In this study the authors describe a theoretical and numerical analysis focused on the TC speed in a four stroke turbo-diesel engine. The purpose of this study is to highlight whether the TC speed allows one to detect the variation of the engine parameters.
Journal Article

Assessment and Experimental Validation of a 3D Acoustic Model of a Motorcycle Muffler

2014-11-11
2014-32-0122
The intake and exhaust lines provide the main abatement of the acoustic emissions of an Internal Combustion Engine (ICE). Many different numerical approaches can be used to evaluate the acoustic attenuation, which is commonly expressed by the Transmission Loss. One-dimensional (1D) and three-dimensional (3D) simulations are conventionally carried out only considering the acoustic domain of the muffler or of the air-box. The walls of the acoustic filter are considered fully rigid and the interaction between the acoustic waves and the structure is consequently negligible. Moreover, the effect of the manufacturing characteristics and the attenuation of the acoustic waves due to the fluid viscous-thermal effects are also commonly disregarded in the numerical analysis of the filters. In addition, the presence of a catalytic converter or a filter cartridge may have an influence on the numerical results.
Technical Paper

Improvement of the Specific Fuel Consumption at Partial Load in SI Engines by Design Strategies based on High Compression Ratio

2014-11-11
2014-32-0060
In the last years, the engineering in the automotive industry is revolutionized by the continuous research of solutions for the reduction of consumptions and pollutant emissions. On this topic maximum attention is paid by both the legislative bodies and the costumers. The more and more severe limitations in pollutant and CO2 emissions imposed by international standards and the increasing price of the fuel force the automotive research to more efficient and ecological engines. Commonly the standard approach for the definition of the engine parameters at the beginning of the design process is based on the wide-open throttle condition although, both in homologation cycles and in the daily usage of the scooters, the engines work mainly at partial load where the efficiency dramatically decreases. This aspect has recently become strongly relevant also for two wheeled vehicles especially for urban purpose.
Technical Paper

Acoustic Characterization of Automotive Mufflers - Part I: Test Rig Design and Evaluation of Acoustic Properties

2012-04-16
2012-01-0800
In current automotive research, increasing attention is being paid to the design of mufflers due to the lower noise levels which have been established by the acoustic international standards. The traditional design approaches are no longer sufficient to meet the standards and more refined techniques are necessary. Within this context, a specific test rig was built at the Energy Engineering Department of the University of Florence to analyze the acoustic characteristics of both industrial mufflers and simplified models. In particular, the latter is commonly used to investigate in detail the physical phenomena connected to the acoustic response of these disposals and to calibrate numerical models. The test rig operates at ambient condition with no flow.
Technical Paper

Acoustic Characterization of Automotive Mufflers - Part II: Validation of the Numerical Models by Means of Experimental Data

2012-04-16
2012-01-0801
Increasing interest is being paid to noise pollution of internal combustion engines and as a result, recent international standards imposed more severe limitations to acoustic emissions on engine manufacturers. In particular, the noise coming from gas-dynamic interactions has an important influence in determining the final noise level of the engine; as a consequence, the muffler design is currently being considered as one of the most important research threads for engine companies. Within this context, the 1D approach to numerical simulations, which has been successfully applied by industrial designers to the fluid-dynamic design of the engine, is considered to be inaccurate in the evaluation of the acoustic behavior of the muffler for medium-high frequencies. On the other hand, an extension of the applicability of these codes in the medium-high frequencies would be desirable.
X