Refine Your Search

Search Results

Viewing 1 to 7 of 7
Research Report

Next-generation Sensors for Automated Road Vehicles

2023-02-20
EPR2023003
This follow-up report to the inaugural SAE EDGE Research Report on “Unsettled Topics Concerning Sensors for Automated Road Vehicles” reviews the progress made in automated vehicle (AV) sensors over the past four to five years. Additionally, it addresses persistent disagreement and confusion regarding certain terms for describing sensors, the different strengths and shortcomings of particular sensors, and procedures regarding how to specify and evaluate them. Next-gen Automated Road Vehicle Sensors summarizes current trends and debates (e.g., sensor fusion, embedded AI, simulation) as well as future directions and needs. Click here to access the full SAE EDGETM Research Report portfolio.
Book

The Mobility Diaries: Connecting the Milestones of Innovation Leading to ACES

2022-09-21
With well over 25 years of experience, Sven Beiker is widely regarded as the mobility expert in Silicon Valley specializing in future trends for the automotive and mobility industries including autonomous driving, connectivity, electrification, and shared mobility. In The Mobility Diaries: Connecting the Milestones of Innovation Leading to ACES, he opens up his personal diary regarding his take on 50 years of mobility innovation and history interwoven with his experiences from 1978 to 2018. From the Foreword by Reilly P. Brennan: “Understanding how transportation itself evolved requires a unique prism. The core components of vehicles today have stories and engineering journeys worth their own telling, and that is what is so exciting about the way we can learn about them in this text. Dr. Beiker’s curriculum vitae, from BMW to Stanford University to McKinsey, are a compendium of experiences that created this unique historical and biographical book.”
Research Report

Unsettled Issues in Remote Operation for On-road Driving Automation

2021-12-15
EPR2021028
On-road vehicles equipped with driving automation features—where a human might not be needed for operation on-board—are entering the mainstream public space. However, questions like “How safe is safe enough?” and “What to do if the system fails?” persist. This is where remote operation comes in, which is an additional layer to the automated driving system where a human remotely assists the so-called “driverless” vehicle in certain situations. Such remote-operation solutions introduce additional challenges and potential risks as the entire vehicle-network-human now needs to work together safely, effectively, and practically. Unsettled Issues in Remote Operation for On-road Driving Automation highlights technical questions (e.g., network latency, bandwidth, cyber security) and human aspects (e.g., workload, attentiveness, situational awareness) of remote operation and introduces evolving solutions.
Research Report

Unsettled Issues Regarding Communication of Automated Vehicles with Other Road Users

2020-11-30
EPR2020023
The focus of this SAE EDGE™ Research Report is to address a topic overlooked by many who choose to view automated driving systems and AVs from a “10,000-foot” perspective: how automated vehicles (AVs) will actually communicate with other road users. Conventional (human-driven) vehicles, bicyclists, and pedestrians already have a functioning system of understating each other while on the move. Adding automated vehicles to the mix requires assessing the spectrum of existing modes of communication – both implicit and explicit, biological and technological, and how they will interact with each other in the real world.
Research Report

Unsettled Issues in Balancing Virtual, Closed-Course, and Public-Road Testing of Automated Driving Systems

2019-12-19
EPR2019011
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the challenges of determining the optimal balance for testing automated driving systems (ADS). Three main issues are outlined that merit immediate interest: First, determining what kind of testing an ADS needs before it is ready to go on the road. Second, the current, optimal, and realistic balance of simulation testing and real-world testing. Third, the challenges of sharing data in the industry. SAE EDGE™ Research Reports are preliminary investigations of new technologies. The three technical issues identified in this report should be discussed in greater depth with the aims of, first, clarifying the scope of the industry-wide alignment needed; second, prioritizing the issues requiring resolution; and, third, creating a plan to generate the necessary frameworks, practices, and protocols.
Research Report

Unsettled Issues in Determining Appropriate Modeling Fidelity for Automated Driving Systems Simulation

2019-12-06
EPR2019007
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the challenges of achieving optimal model fidelity for developing, validating, and verifying vehicles capable of automated driving. Three main issues are outlined that merit immediate interest: First, assuring that simulation models represent their real-world counterparts, how to quantify simulation model fidelity, and how to assess system risk. Second, developing a universal simulation model interface and language for verifying, simulating, and calibrating automated driving sensors. Third, characterizing and determining the different requirements for sensor, vehicle, environment, and human driver models. SAE EDGE™ Research Reports are preliminary investigations of new technologies.
Research Report

Unsettled Topics Concerning Sensors for Automated Road Vehicles

2018-10-18
EPR2018001
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the new generation of sensors designed for vehicles capable of automated driving. Four main issues are outlined that merit immediate interest: First, specifying a standardized terminology and taxonomy to be used for discussing the sensors required by automated vehicles. Second, generating standardized tests and procedures for verifying, simulating, and calibrating automated driving sensors. Third, creating a standardized set of tools and methods to ensure the security, robustness, and integrity of data collected by such sensors. The fourth issue, regarding the ownership and privacy of data collected by automated vehicle sensors, is considered only briefly here since its scope far exceeds the technical issues that are the primary focus of the present report. SAE EDGE™ Research Reports are preliminary investigations of new technologies.
X