Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Engineering Project Management

2024-10-22
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Project Management and Advanced Product Quality Planning (APQP) are two critical techniques used in product development in the mobility industry today. This course will bring these techniques together in an easy to understand format that goes beyond the typical concept of constructing timelines and project planning, by exploring not only the Automotive APQP process, but also key aspects of PM processes.
Book

Stapp Car Crash Journal

2024-06-28
This title includes the technical papers developed for the 2023 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion about the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes.
Technical Paper

Experimental Study of Lignin Fuels for CI Engines

2024-06-12
2024-37-0022
This study explores the feasibility of using a sustainable lignin-based fuel, consisting of 44 % lignin, 50 % ethanol, and 6 % water, in conventional compression ignition (CI) marine engines. Through experimental evaluations on a modified small-bore CI engine, we identified the primary challenges associated with lignin-based fuel, including engine startup and shutdown issues due to solvent evaporation and lignin solidification inside the fuel system, and deposit formation on cylinder walls leading to piston ring seizure. To address these issues, we developed a fuel switching system transitioning from lignin-based fuel to cleaning fuel with 85 vol% of acetone, 10 vol% of water and 5 vol% of ignition improving additive, effectively preventing system clogs.
Technical Paper

Numerical Study of Application of Gas Foil Bearings in High-Speed Drivelines

2024-06-12
2024-01-2941
Gas bearings are an effective solution to high-speed rotor applications for its contamination free, reduced maintenance and higher reliability. However, low viscosity of gas leads to lower dynamic stiffness and damping characteristics resulting in low load carrying capacity and instability at higher speeds. Gas bearings can be enhanced by adding a foil structure commonly known as gas foil bearings (GFBs), whose dynamic stiffness can be tailored by modifying the geometry and the material properties resulting in better stability and higher load carrying capacity. A detailed study is required to assess the performance of high-speed rotor systems supported on GFBs, therefore in this study a bump type GFB is analyzed for its static and dynamic characteristics. The static characteristics are obtained by solving the non-linear Reynolds equation through an iterative procedure.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

Bushing Stiffness Optimization Method for NVH Improvement Using Blocked Force and Energy-Based Index in Suspension System

2024-06-12
2024-01-2921
Reductions in powertrain noise have led to an increased proportion of road noise, prompting various studies aimed at mitigating it. Road excitation primarily traverses through the vehicle suspension system, necessitating careful optimization of the characteristics of bushings at connection points. However, optimizing at the vehicle assembly stage is both time-consuming and costly. Therefore, it is essential to proceed with optimization at the subsystem level using appropriate objective functions. In this study, the blocked force and energy-based index derived from complex power were used to optimize the NVH performance. Calculating the complex power in each bushing enables computing the power flow, thereby providing a basis for evaluating the NVH performance. Through stiffness injection, the frequency response functions (FRF) of the system can be predicted according to arbitrary changes in the bushing stiffness.
Technical Paper

Optimizing High-Lift Airfoils for Formula Student Vehicles

2024-05-13
2024-01-5059
This document presents a study on the design and simulation of a high-lift airfoil intended for usage in multielement setups such as the wings present on open-wheel race cars. With the advancement of open-wheel race car aerodynamics, the design of existing high-lift airfoils has been altered to create a more useful and practical general profile. Adjoint optimization tools in CFD (ANSYS Fluent) were employed to increase the airfoil’s performance beyond existing high-lift profiles (Selig S1223). Improvements of up to 20% with a CL of 2.4 were recorded. To further evaluate performance, the airfoil was made the basis of a full three-dimensional aerodynamics package design for an open-wheel Formula Student car. CFD simulations were carried out on the same and revealed performance characteristics of the airfoil in a more practical application. These CFD simulations were calibrated with experimental values from coast-down testing data with an accuracy of 8%.
Technical Paper

Assessment of Condensation Particle Counter-Based Portable Solid Particle Number System for Applications with High Water Content in Exhaust

2024-04-22
2024-01-5048
The Particle Number–Portable Emission Measurement System (PN-PEMS) came into force with Euro VI Phase E regulations starting January 1, 2022. However, positive ignition (PI) engines must comply from January 1, 2024. The delay was due to the unavailability of the PN-PEMS system that could withstand high concentrations of water typically present in the tailpipe (TP) of CNG vehicles, which was detrimental to the PN-PEMS systems. Thus, this study was designed to evaluate the condensation particle counter (CPC)-based PN-PEMS measurement capabilities that was upgraded to endure high concentration of water. The PN-PEMS measurement of solid particle number (SPN23) greater than 23 nm was compared against the laboratory-grade PN systems in four phases. Each phase differs based upon the PN-PEMS and PN system location and measurements were made from three different CNG engines. In the first phase, systems measured the diluted exhaust through constant volume sampler (CVS) tunnel.
Journal Article

Potential Analysis of Defossilized Operation of a Heavy-Duty Dual-Fuel Engine Utilizing Dimethyl Carbonate/Methyl Formate as Primary and Poly Oxymethylene Dimethyl Ether as Pilot Fuel

2024-04-18
Abstract This study demonstrates the defossilized operation of a heavy-duty port-fuel-injected dual-fuel engine and highlights its potential benefits with minimal retrofitting effort. The investigation focuses on the optical characterization of the in-cylinder processes, ranging from mixture formation, ignition, and combustion, on a fully optically accessible single-cylinder research engine. The article revisits selected operating conditions in a thermodynamic configuration combined with Fourier transform infrared spectroscopy. One approach is to quickly diminish fossil fuel use by retrofitting present engines with decarbonized or defossilized alternatives. As both fuels are oxygenated, a considerable change in the overall ignition limits, air–fuel equivalence ratio, burning rate, and resistance against undesired pre-ignition or knocking is expected, with dire need of characterization.
Journal Article

Characterization of Pyrolysis Oil Extracted from High Lignocellulosic Groundnut Shell Biomass

2024-04-18
Abstract Fossil fuel reserves are swiftly depleting when consumer demand for these fuels continues to rise. In order to meet the demand and diminish the pollution derived through conventional fuels, it is crucial to employ cleaner fuels made from substitutes such as waste biomass. Also, converting waste biomass to fuel can lower usage of landfills. There are many biomass resources that are suitable for fuel production, out of which groundnut is also a potential feedstock. Groundnut shell biomass was chosen for this study, as it is a waste leftover during shelling of groundnuts for various commercial applications. The procured groundnut shells were converted to oil using pyrolysis process and was distilled. Both the pyrolysis oil and the distilled oil were analyzed using Fourier transform infrared instrument wherein the presence of functional groups such as alcohols, amines, and carboxylic acids were identified.
Journal Article

The Design of Operational Design Condition for Automated Driving System

2024-04-10
Abstract A new revolution has taken place in the automobile industry in recent years, intelligent and connected vehicle (ICV) [1] has achieved a higher market share in recent years and relevant technologies have been quickly developed and widely accepted, so the auto industry needs to make regulations for automated driving system (ADS) on ICVs, mainly to assure the safety of ICV. To meet the requirements above, the definition of operational design domain (ODD) [2, 3] was put forward by the Society of Automotive Engineers (SAE) and International Organization for Standardization (ISO) a few years ago. ODD defines necessary external environment conditions for the ADS to operate, but the internal status of the vehicle is also a key part of judging whether ADS can operate safely.
Technical Paper

AI-based EV Range Prediction with Personalization in the Vast Vehicle Data

2024-04-09
2024-01-2868
It is an important factor in electric vehicles to show customers how much they can drive with the energy of the remaining battery. If the remaining mileage is not accurate, electric vehicle drivers will have no choice but have to feel anxious about the mileage. Additionally, the potential customers have range anxiety when they consider Electric Vehicles. If the remaining mileage to drive is wrong, drivers may not be able to get to the charging station and may not be able to drive because the battery runs out. It is important to show the remaining available driving range exactly for drivers. The previous study proposed an advanced model by predicting the remaining mileage based on actual driving data and based on reflecting the pattern of customers who drive regularly. The Bayesian linear regression model was right model in previous study.
Technical Paper

Research on Artificial Potential Field based Soft Actor-Critic Algorithm for Roundabout Driving Decision

2024-04-09
2024-01-2871
Roundabouts are one of the most complex traffic environments in urban roads, and a key challenge for intelligent driving decision-making. Deep reinforcement learning, as an emerging solution for intelligent driving decisions, has the advantage of avoiding complex algorithm design and sustainable iteration. For the decision difficulty in roundabout scenarios, this paper proposes an artificial potential field based Soft Actor-Critic (APF-SAC) algorithm. Firstly, based on the Carla simulator and Gym framework, a reinforcement learning simulation system for roundabout driving is built. Secondly, to reduce reinforcement learning exploration difficulty, global path planning and path smoothing algorithms are designed to generate and optimize the path to guide the agent.
Technical Paper

Federated Learning Enable Training of Perception Model for Autonomous Driving

2024-04-09
2024-01-2873
For intelligent vehicles, a robust perception system relies on training datasets with a large variety of scenes. The architecture of federated learning allows for efficient collaborative model iteration while ensuring privacy and security by leveraging data from multiple parties. However, the local data from different participants is often not independent and identically distributed, significantly affecting the training effectiveness of autonomous driving perception models in the context of federated learning. Unlike the well-studied issues of label distribution discrepancies in previous work, we focus on the challenges posed by scene heterogeneity in the context of federated learning for intelligent vehicles and the inadequacy of a single scene for training multi-task perception models. In this paper, we propose a federated learning-based perception model training system.
Technical Paper

Internet of Autonomous Vehicles for The Distribution System of Smart Cities

2024-04-09
2024-01-2882
With the development of internet technology and autonomous vehicles (AVs), the multimodal transportation and distribution model based on AVs will be a typical application paradigm in the smart city scenario. Before AVs carry out logistics distribution, it is necessary to plan a reasonable distribution path based on each customer point, and this is also known as Vehicle Routing Problem (VRP). Unlike traditional VRP, the urban logistics distribution process based on multimodal transportation mode will use a set of different types of AVs, mainly including autonomous ground vehicles and unmanned aerial vehicles (UAVs). It is worth pointing out that there is currently no research on combining the planning of AVs distribution paths with the trajectory planning of UAVs. To address this issue, this article establishes a bilevel programming model. The upper-level model aims to plan the optimal delivery plan for AVs, while the lower-level model aims to plan a driving trajectory for UAVs.
Technical Paper

Automotive Validation Using Python to Control Test Equipment and Automate Test Cases

2024-04-09
2024-01-2848
Validation plays a crucial role in any Electronic Development process. This is true in the development of any automotive Electronic Control Unit (ECU) that utilizes the Automotive V process. From Research and Development (R&D) to End of Line (EOL), every automotive module goes through a plethora of Hardware (HW) and Software (SW) testing. This testing is tedious, time consuming, and inefficient. The purpose of this paper is to show a way to streamline validation in any part of the automotive V process using Python as a driving force to automate and control Hardware-in-the-loop (HIL) / Model-in-the-loop (MIL) / Software-in-the-loop (SIL) validation. The paper will propose and outline a framework to control test equipment, such as power supplies and oscilloscopes, load boxes, and external HW. The framework includes the ability to control CAN communication signals and messages.
Technical Paper

Improving CRC Fault Detection Probability in AUTOSAR E2E Based on Known Hamming Weights

2024-04-09
2024-01-1987
To develop safe vehicles, system development must be performed in compliance with functional safety. Functional safety considers situations where failures could make a vehicle unsafe, and it requires the inclusion of mechanisms to detect and mitigate these failures, even though they may not always be detected with 100% certainty — referred as diagnostic coverage (DC). Therefore, some faults, called residual faults, might go undetected. In the realm of functional safety from a communication perspective, industry standards define nine distinct fault modes. The detection of these faults is crucial, especially in the widely used AUTOSAR automotive operating system. AUTOSAR E2E (End-to-End Communication Protection) serves as a communication fault detection mechanism utilizing three mechanisms: counters, timers, and Cyclic Redundancy Check (CRC) to address the nine fault modes. Especially, determining the DC for CRC can be challenging and often requires a conservative evaluation approach.
Technical Paper

Simulative Assessments of Cyclic Queuing and Forwarding with Preemption in In-Vehicle Time-Sensitive Networking

2024-04-09
2024-01-1986
The current automotive industry has a growing demand for real-time transmission to support reliable communication and for key technologies. The Time-Sensitive Networking (TSN) working group introduced standards for reliable communication in time-critical systems, including shaping mechanisms for bounded transmission latency. Among these shaping mechanisms, Cyclic Queuing and Forwarding (CQF) and frame preemption provide deterministic guarantees for frame transmission. However, despite some current studies on the performance analysis of CQF and frame preemption, they also need to consider the potential effects of their combined usage on frame transmission. Furthermore, there is a need for more research that addresses the impact of parameter configuration on frame transmission under different situations and shaping mechanisms, especially in the case of mechanism combination.
Technical Paper

Closed Track Testing To Assess Prototype Level-3 Autonomous Vehicle Readiness for Public Road Deployment

2024-04-09
2024-01-1976
Most of the Automated Driving Systems (ADS) technology development is targeting urban areas; there is still much to learn about how ADS will impact rural transportation. The DriveOhio team deployed level-3 ADS-equipped prototype vehicles in rural Ohio with the goal of discovering technical challenges for ADS deployment in such environments. However, before the deployment on public roads, it was essential to test the ADS-equipped vehicle for their safety limitations. At Transportation Research Center Inc. (TRC Inc.) proving grounds, we tested one such prototype system on a closed test track with soft targets and robotic platforms as surrogates for other road users. This paper presents an approach to safely conduct testing for ADS prototype and assess its readiness for public road deployment. The main goal of this testing was to identify a safe Operational Design Domain (ODD) of this system by gaining better understanding of the limitations of the system.
X