Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Influence of Fundamental Processing Parameters of Ultrasonic Shot Peening on Surface Characteristics of 7B50-T7751 Alloy

2024-04-09
2024-01-2681
Aluminum alloy has become an indispensable part of the automotive industry because of its excellent mechanical properties such as lightweight, high strength, high reliability, maintainability, and low cost. Aluminum alloy is used in automobiles, such as engine blocks, cylinder heads, intake manifolds, brake components, and fuel tanks. Fatigue and fracture are the main reasons for its engineering failure. Surface strengthening techniques, such as ultrasonic shot peening (USP), are often used to improve the fatigue resistance of aluminum alloys. This article expounds on the working principle of USP and elucidates the influence of USP process parameters on the surface characteristics of aluminum alloy. Experimental results observed the effects of USP parameters on surface properties such as surface roughness, microhardness, and surface morphology.
Technical Paper

Bi-Directional Adjustable Holder for LiDAR Sensor

2024-01-16
2024-26-0024
LiDAR stands for Light Detection and Ranging. It works on the principle of reflection of light. LiDAR is one among the other sensors like RADAR and Camera to help achieve a higher level (Level 3 & above) of Autonomous driving capabilities. LiDAR, as a sensor, is used to perceive the environment in 3D by calculating the ‘Time of flight’ of the Laser beam transmitted from LiDAR and the rays reflected from the Object, along with the intensity of reflection from the object. The frame of perception is plotted as a point cloud. LiDAR is integrated in front of the vehicle, precisely in the grill of the car having a high vantage point to perceive the environment to extract the best possible sensor performance. LiDAR sensor needs to be held within the front panel cutout with uniform gap and flush condition.
Technical Paper

Optimization of Energy Absorption and Deformation Characteristics of Aluminium Crash Box with the Effect of Groove along with a Screw

2023-11-10
2023-28-0089
The Crash box is the mechanical component that absorbs the impact energy by axial deformation. When an accident occurs, energy absorption and deformation play a vital role in the Automobile safety aspects, and also grooves and triggers are the ones included in the crash box for axial folding and uniform deformation. Here in this research paper, the energy absorption of kinetic energy and deformation parameter is going to be compared with the crash box with the groove at different thicknesses, also the groove is added through the vertical axis along with axial crush occurs. The modeling is done in Hyper mesh 2021 and the simulation and result validation in LS Dyna. The primary goal of this research project is to increase the crash box’s efficiency and enhance the crashworthiness and the passive safety of the passenger vehicle. It is also observed that the groove plays a vital role in reducing the acceleration transmitted to the surrounding area.
Technical Paper

Vehicle Outer Body Panel Oil Canning Performance Prediction Using Machine Learning

2023-07-31
2023-01-5048
Thin plates buckle after applying load and return to normal position after the load is released, this process is called oil canning. Waviness in thin panels can be seen on various plates of metals. Oil canning is a major issue if panels are too thin and these panels create vibration and noise in the vehicle body panel. If the panels are wider, then there are more chances of oil canning issues. Different digital simulations and physical techniques are currently available to check the canning performance, but they required geometrical data and physical setup. In this paper machine learning (ML) approach to predict the oil canning performance is presented. This approach adds a new process to the existing process of vehicle door design, but it helps avoid the number of simulations and unwanted structural modifications at the early design stage, making it a handy and powerful tool for the designer.
Technical Paper

Relation of Compression Residual Stress on Pre-Tensioned Surface in Parabolic Leaf Spring Submitted to the Stress Shot Peening Process in Carbon Steel

2023-07-25
2023-36-0354
This work deals with the effect of different blasting conditions under stress on the intensity and distribution of compressive residual stresses. The tests were performed on bars measuring 17 mm x 70 mm x 1700 mm in AISI 51CrV4 carbon steel. The samples are considered parabolic leaf spring, as there is a variation in thickness from the tip to the center, the thickness ay the center is higher than tip thickness. The samples were laminated to their thickness in double roller laminators, in order to obtain the desired thicknesses. The samples were quenched and tempered in industrial scale furnaces. The pre-tensions were calculated by the ANSYS® software and validated by characterization with strain gauges, in a test condition of 1400 MPa of pre-tension. Tensile tests and microstructure analysis were applied to ensure the specification in terms of strength and microstructure.
Standard

Cast Shot and Grit Size Specifications for Cleaning and Peening

2023-06-27
CURRENT
J444_202306
This SAE Recommended Practice pertains to blast cleaning and shot peening and provides for standard cast shot and grit size numbers. For shot, this number corresponds with the opening of the nominal test sieve, in ten thousandths of inches1, preceded by an S. For grit, this number corresponds with the sieve designation of the nominal test sieve with the prefix G added. These sieves are in accordance with ASTM E11. The accompanying shot and grit classifications and size designations were formulated by representatives of shot and grit suppliers, equipment manufacturers, and automotive users.
Standard

Anodized Aluminum Automotive Parts

2023-05-22
CURRENT
J399_202305
Automotive parts can be fabricated from either coiled sheet, flat sheet or extruded shapes. Alloy selection is governed by finish requirements, forming characteristics, and mechanical properties. Bright anodizing alloys 5657 and 52521 sheet provide a high luster and are preferred for trim which can be formed from an intermediate temper, such as H25. Bright anodizing alloy 5457 is used for parts which require high elongation and a fully annealed ("0") temper. Alloy 6463 is a medium strength bright anodizing extrusion alloy; Alloy X7016 is a high strength bright anodizing extrusion alloy primarily suited for bumper applications. To satisfy anti-glare requirements for certain trim applications, sheet alloy 5205 and extrusion alloy 6063 are capable of providing the desired low-gloss anodized finish.
Standard

Electroplating and Related Finishes

2023-05-22
CURRENT
J474_202305
Electroplating is a process whereby an object is coated with one or more relatively thin, tightly adherent layers of one or more metals. It is accomplished by placing the object to be coated on a plating rack or a fixture, or in a basket or in a rotating container in such a manner that a suitable current may flow through it, and then immersing it in a series of solutions and rinses in planned sequence. The advantage to be gained by electroplating may be considerable; broadly speaking, the process is used when it is desired to endow the basis material (selected for cost, material conservation, and physical property reasons) with surface properties it does not possess. It should be noted that although electroplating is the most widely used process for applying metals to a substrate, they may also be applied by spraying, vacuum deposition, cladding, hot dipping, chemical reduction, mechanical plating, etc.
Journal Article

Prediction of Surface Finish on Hardened Bearing Steel Machined by Ceramic Cutting Tool

2023-05-17
Abstract Prediction of the surface finish of hardened bearing steels was estimated in machining with ceramic uncoated cutting tools under various process parameters using two statistical approaches. A second-order (quadratic) regression model (MQR, multiple quantile regression) for the surface finish was developed and then compared with the artificial neural network (ANN) method based on the coefficient determination (R 2), root mean square error (RMSE), and percentage error (PE). The experimental results exhibited that cutting speed was the dominant parameter, but feed rate and depth of cut were insignificant in terms of the Pareto chart and analysis of variance (ANOVA). The optimum surface finish in machining bearing steel was achieved at 100 m/min speed, 0.1 mm/revolution (rev) feed rate, and 0.6 mm depth of cut.
Technical Paper

Analysis of the Thermodynamic Effects of a Plate Based on Numerical Simulations

2023-04-11
2023-01-0765
Heat transfer is a common phenomenon in engineering applications, and selecting an appropriate material is vital. When the heat is exchanged between two mediums, the wall or material in-between them is exposed to extreme temperatures (high and low), commonly known as a cooling or heating plate. This article proposes a finite difference formulation to determine the temperature distribution of a plate for a 2D steady-state heat conduction equation. This formulation is then applied to a specific plate shape with particular boundary conditions. A MATLAB code is proposed to formulate the heat conduction equation using a finite difference approach. The proposed methodology can be used to determine the temperature distribution of a plate along with boundary conditions defined by the user, including plate size, size of the resolution in both axes (horizontal and vertical), heat flux, and thermal conductivity. Finally, the results of the proposed methodology are verified by modeling.
Standard

Hydraulic Flange Tube, Pipe, and Hose Connections Four-Screw Flange Connection - Part 1: 3.5 to 35 MPa (Code 61)

2023-03-01
CURRENT
J518/1_202303
This SAE Standard covers general and dimensional specifications for the Code 61 metric (Type 1) and inch (Type 2) flanged heads, flange clamps (FC and FCM), and split flange clamps (FCS and FCSM) applicable to four-screw flange type tube, pipe, and hose connections. Also included are the recommended port dimensions and port design considerations. Type 2 (inch) flange clamps and split flanges are not for new design. The flanged heads specified are incorporated into fittings having suitable means for attachment of tubes, pipes, or hoses to provide connection ends. These connections are intended for application in hydraulic systems, on industrial and commercial products, where it is desired to avoid the use of threaded connections. The rated working pressure of an assembly shall not exceed the least of all the component working pressure rated values. The following general specifications supplement the dimensional data contained in the tables with respect to all unspecified detail.
Technical Paper

Better performance in fine-grain steel for transmission

2023-02-10
2022-36-0033
Manual transmissions for passenger cars are facing pressures due to rapid growth of automatic transmissions, which already represents more than 60% of Brazil market, and from higher torque demand due to strict emission legislation, which turbo engines had presented great contribution to it. To solve this contradictory issue, gears with higher strength and lower cost have been studied to replacement Nickel by Niobium in the steels. Furthermore, this technology could be applied to solve the issues with electrified vehicle, where high torque, speed and lifetime are demanded pursued for gears. This study aimed to build prototypes and compare the S-N curves, fracture analysis, microstructure for three kinds of steels (QS4321 with Ni, QS1916 FG without Ni & with Nb and QS 1916 without Ni and Nb) in the condition carburized, hardened and tempered with and without shot peening.
Technical Paper

Statistical Modeling and Parameter Optimization of Electric-Powered Rotary Screw Air Power Compressor

2023-01-23
2023-01-5006
In this study, a statistical correlation was established among the input parameters, namely, ambient temperature (AT), oil injection orifice (OIO) size, and cooling fan speed with free air delivery (FAD), input power (IP), and discharge oil temperature (DOT) of an electric-powered twin screw air compressor. Experiments were designed based on a central composite design (CCD). A response optimizer is used to identify the combination of input operating parameter settings that optimizes responses independently and collectively. A model considering all responses together with equal priorities provides the maximum FAD of 254.71 cfm and minimum IP of 44.16 kW by setting the compressor with an AT of 44°C, OIO size of 4.0 mm, and a cooling fan speed of 1220 rpm. Higher ambient conditions are achieved for experimental purposes by designing a hot chamber wherein hot air from the cooling fan exhaust is mixed with the ambient air.
Standard

Hose Clamp Specifications

2023-01-13
CURRENT
J1508_202301
This SAE Standard covers 32 types of clamps most commonly and suitably being used on OEM coolant, fuel, oil, vacuum, and emission systems.
Standard

Shot Peening Coverage Determination

2023-01-13
CURRENT
J2277_202301
This SAE Recommended Practice provides procedures for determining shot peening coverage and relating coverage to part exposure to the media stream. Effectiveness of shot peening is directly dependent on coverage. Inadequate or excessive coverage can be detrimental to fatigue strength and component life.
Technical Paper

Mechanical Properties Enhancement of A356 Alloy Hybrid Composite by FSP and SP Route

2022-12-23
2022-28-0541
Pure aluminium alloy (AA) components are not extending their cyclic life due to soft nature of the surfaces for most of the automotive structural parts, exposed to various loading and stress exposed areas through various surface property enhancement techniques. Among all the technique friction stir processing (FSP) followed by shot peening (SP) technique is the most viable and cost-effective process for enhancement of component performance and SP removing residual stresses on the samples thereby improving surface strength. The main objective of the proposed work was cast A356 alloy reinforced with nano form of 6wt% silicon carbide (SiC) harder particles and 3wt% self-lubricant graphene (Gr) was used to fabricated a surface nano hybrid composite through FSP technique. SP route was performed on the FSP-ed samples with optimal parametric conditions for obtaining improved mechanical performances.
Standard

User’s Manual for the 50th Percentile Male Hybrid III Dummy

2022-11-22
CURRENT
J2856_202211
The purpose of this document is to provide the user with the procedures needed to properly assemble and disassemble the 50th percentile male Hybrid III dummy, certify its components and verify its mass and dimensions. Also within this manual are guidelines for handling accelerometers, repairing flesh and setting joints.
Technical Paper

Research on the Dynamic Safety Boundary of Fast Charging Based on the Modified P2D Model of Lithium Plating

2022-10-28
2022-01-7035
With the worldwide trends in mobile electrification, consumers' demand for fast charging of electric vehicles (EVs) continues to grow. However, due to the defects of the current mainstream vehicle-mounted lithium-ion batteries (LIBs), lithium plating will occur at the anode during charging at high current rates, reducing battery life and even causing serious safety problems. In this paper, a pseudo two-dimensional (P2D) model integrated with lithium plating and SEI growth reaction is established to simulate the aging behavior of the battery during the cycle aging process. After verifying the model, we set up simulation conditions to quantitatively analyze the relationship between battery operating temperature, charging rate and cycle life, as well as the causes of capacity attenuation under each operating condition.
Standard

SAE Manual on Blast Cleaning

2022-09-23
CURRENT
J792_202209
Blast cleaning may be defined as a mechanical pre-treatment process in which a suitable stream of solid particles is propelled with sufficient velocity against a work surface to cause a cleaning or abrading action when it comes in contact with the workpiece. Blast cleaning may be employed for a variety of purposes. It is a well-established method for removing sand from castings and burrs or scale from forgings, mill products, or heat treated parts; to promote machinability; and to minimize the possibility of interference in actual operation. In addition to this use, blast cleaning also produces a suitable surface for downstream industrial coatings. All these objectives are often accomplished in the one operation. As a general understanding, this document pertains to blast cleaning only. Any reference to shot peening or other processes is only to explain a context or concept related to blast cleaning.
X