Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Heavy Vehicle Disc Brake Components Design Using CAE Tools

2006-10-31
2006-01-3559
Two simulation analysis case studies for optimization of disc brake assembly level performance and component structural strength using CAE tools were discussed. The first case study discussed was about disc brake assembly level simulation studies to optimize brake pads contact pressures in order to achieve uniform brake friction pad wear during operation, and optimize the guide pin reaction loads. In the second case study, structural optimization of brake torque plate using CAE tools was discussed. The CAE results were validated with the component testing.
Technical Paper

Weld Durability Analysis by Equilibrium-Equivalent Structural Stress Approach

2006-10-31
2006-01-3576
Welding has been used extensively in automotive components design due to its flexibility to be applied in manufacturing, high structural strength and low cost. To improve fuel economy and reduce material cost, weight reduction by optimized structural design has been a high priority in auto industry. In the majority of heavy duty vehicle's chassis components design, the ability to predict the mechanical performance of welded joints is the key to success of structural optimization. FEA (finite element analysis) has been used in the industry to analyze welded parts. However, mesh sensitivity and material properties have been major issues due to geometry irregularity, metallurgical degradation of the base material, and inherent residual stress associated with welded joints. An approach, equilibrium-equivalent structural stress method, led by Battelle and through several joint industrial projects (JIP), has been developed.
X