Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Modal Model Correlation of Commercial Vehicle Frame

2019-01-09
2019-26-0212
Design decisions based on the virtual simulations leads to reduced number of prototype testing. Demonstrated correlation between the computer simulations and experimental test results is vital for designers to confidently take simulation driven design decisions. For the virtual design evaluation of durability, ride, handling and NVH performance, demonstration of correlation of structural dynamic characteristics is critical. Modal correlation between CAE and physical testing validates the stiffness and mass distribution used in the FE model by correlating mode shape and mode frequency in the desired frequency range. The objective of this study is to arrive at a method for establishing modal correlation between CAE and experimental test for a bare frame and thereby enabling evaluation of design iterations in virtual environment to achieve modal targets.
Technical Paper

A Modular High Frequency Stable Orthogonal Road Load Exciter for Validation of Automotive Components

2015-09-29
2015-01-2754
The commercial vehicle industry is evolving faster with the rise in multifarious aspects deciding a company's progress. In the current scenario, vehicle performance and its reliability in the areas of payload, fuel economy, etc. play vital roles in determining its sustenance in the industry, in addition to reducing driver fatigue and improving comfort levels. Test quality and time is the key to assure and affirm, smooth and quick launch of the product into the market. This paper details on the design of Multi-Axis road data simulator which entails realistic loads onto the components for capturing meaningful information on behavior of the product and recreate the field failure modes. The design was conceptualized keeping in mind both cost (for initial installation and running cost) and time for testing without loss in the convergence factor.
Technical Paper

Potential Weight Saving in Buses Through Multi Material Approach

2014-09-30
2014-01-2453
Vehicle light-weighting of late has gained a lot of importance across the automotive industry. With the developed nations like the U.S. setting stringent fuel economy targets of 54.5 mpg by 2025, the car industry's R&D is taking light weighting to a whole new level, besides improving engine efficiency. The commercial vehicles on the other hand are also gradually catching up when it comes to using alternate material for weight reduction. This paper will discuss light-weighting in the context of buses though. For a typical bus, the contribution of shell structure weight in the bus body weight is more than 40%. This qualifies as the area with a huge potential for weight saving. On the other hand the shell structure forms the base skeleton of the bus body providing it with adequate strength and stiffness for meeting both functional (bending & torsional stiffness) and passive safety requirements (rollover compliance).
Technical Paper

Severity Study of Conventional Rollover vs. Flat Ground Rollover

2013-11-27
2013-01-2785
CAE based methodologies for structural analysis has improved considerably and is now commonly used for product development. This methodology can also be used effectively for certification of products against safety standards requiring structural performance. Use of CAE can address the issue of certifying a large number of product variants without the need of expensive and destructive physical tests. The probability and variation in rollover accident varies with different bus application. This paper discuss on the major change in the requirement between flat rollover with the convention rollover over 800mm ditch. It also discusses on the severity of rollover in both rollover scenarios for intercity applications using simulation techniques.
Technical Paper

Evolution of Bus Design in India

2013-11-27
2013-01-2764
Buses have been main means of mass transport in organized as well as unorganized sectors in India. Though the art and science of Chassis Designing had been practiced and matured by all Indian OEMs, Body design had long not been accorded high priority by them. Till 1989, there was no comprehensive set of rules enforced. Bus designs were developed with scant regard for safety and emission. OEMs sold their products in the form of drive away chassis and the Body Design & Body Building was largely left to Body Builders, many of whom employed poor design, build and quality control practices. Spurious materials, parts, non-uniform construction resulted in number of accidents and many of them were fatal. Central Motor Vehicle Rules (CMVR) kicked-in 1st July 1989. With roll out of CMVR, various safety related features like entry/exit door, emergency exits, window frames, their locations, dimensions and designs were defined.
X