Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Simulation to Test Results Correlation Study in a Medium Duty Truck

2023-09-14
2023-28-0037
In view of the stringent emission norms laid out by government of India, BSVI Engines are with additional heat rejection requirements with limited packaging space for Cooling system. An appropriate Radiator, Charge Air Cooler and Fan is decided within the available packaging space based on the Engine heat rejection needs. In this paper an approach is defined to arrive at a Cooling system architecture which is very compact in design and packaged between the Engine and Front member in a limited space. Modelling is done in Thermal simulation software KULI. Good correlation is achieved between simulation to test results.
Technical Paper

Thermal System Design for a Fuel Cell Electric Truck

2023-09-14
2023-28-0020
In today’s world, due to fast depletion of fossil fuel and the increasing CO2 emission, the need to switch to alternate energy sources are higher. Stringent norms on exhaust emissions in IC Engine vehicles implies, very complex after treatment systems. Already many OEMs have refined their development strategies towards phasing out of IC Engines and bringing in Fuel Cell vehicles, Battery Electric Vehicles and Hydrogen IC Engine vehicles. Focus is on Hydrogen for Long Haul vehicles. In this paper cooling system design is demonstrated for Fuel Cell, Battery and Power Electronics system in a Heavy Duty Fuel Cell Electric Truck. Radiator and Fans are selected based on the overall heat rejection and Coolant inlet temperature requirements of components. Cooling system circuit and pump is decided to meet the coolant flow rate targets. High temperature cooling system and Low temperature cooling system are explained in detail. Thermal simulation is done using simulation software KULI.
Technical Paper

Establishment of Chassis Dynamometers for Commercial Vehicles

2019-04-02
2019-01-0702
The Chassis Dynamo-meter system provides a means of testing vehicle in place of driving them on the test track or highway. The machine simulates road conditions in speed, torque or road load control modes, allowing the vehicle to experience the same forces as it would be on the test track or highway. Chassis dynamo-meter with its 24 x 7 capabilities can perform several value-added tests to assess vehicle performance while operating under load in short period of time and with other intangible benefits such as well-timed product launch, reduced breakdown time and faster failure resolution, Dynamo-meter is worthy of an investment. However, the scale of investment and constraints in required infrastructure limits the number of dynamo-meters in a R&D center of Original Equipment Manufacturers.
Technical Paper

Modal Model Correlation of Commercial Vehicle Frame

2019-01-09
2019-26-0212
Design decisions based on the virtual simulations leads to reduced number of prototype testing. Demonstrated correlation between the computer simulations and experimental test results is vital for designers to confidently take simulation driven design decisions. For the virtual design evaluation of durability, ride, handling and NVH performance, demonstration of correlation of structural dynamic characteristics is critical. Modal correlation between CAE and physical testing validates the stiffness and mass distribution used in the FE model by correlating mode shape and mode frequency in the desired frequency range. The objective of this study is to arrive at a method for establishing modal correlation between CAE and experimental test for a bare frame and thereby enabling evaluation of design iterations in virtual environment to achieve modal targets.
Technical Paper

A Modular High Frequency Stable Orthogonal Road Load Exciter for Validation of Automotive Components

2015-09-29
2015-01-2754
The commercial vehicle industry is evolving faster with the rise in multifarious aspects deciding a company's progress. In the current scenario, vehicle performance and its reliability in the areas of payload, fuel economy, etc. play vital roles in determining its sustenance in the industry, in addition to reducing driver fatigue and improving comfort levels. Test quality and time is the key to assure and affirm, smooth and quick launch of the product into the market. This paper details on the design of Multi-Axis road data simulator which entails realistic loads onto the components for capturing meaningful information on behavior of the product and recreate the field failure modes. The design was conceptualized keeping in mind both cost (for initial installation and running cost) and time for testing without loss in the convergence factor.
Journal Article

Development and Analysis of an Electric Vehicle Controller for LCV

2015-01-14
2015-26-0110
This paper describes the system architecture together with control and diagnostics features of an indigenously developed electric vehicle controller for Light Commercial Vehicle. The key functions of vehicle controller include power management, driveline controls, regeneration and vehicle mode controls. In particular this paper presents vehicle's operational strategy in economy, normal and performance modes based on the vehicle speed and SOC. It also has feature to enable vehicle operation in reduced performance mode at low battery voltages. The battery fault predictor algorithm is also described in detail that is used to control discharge current to prevent sudden dip in SOC and to increase battery life. The vehicle control strategy is modeled & simulated using MATLAB™ environment and results for a specific test case are validated with embedded controllers-in-the-loop in a test-bench environment.
Technical Paper

A Systematic Approach of Improving Reliability Process through Development and Application of On-Board Diagnostics System, for Commercial Vehicle

2015-01-14
2015-26-0101
This paper describes a methodology for design and development of On-Board Diagnostic system (OBD) with an objective to improve current reliability process in order to ensure design & quality of the new system as per requirement of commercial vehicle technology. OBD is a system that detects failures which adversely affect emissions and illuminates a MIL (Malfunction Indicator Lamp) to inform the driver of a fault which may lead to increase in emissions. OBD provides standard and unrestricted access for diagnosis and repair. Below given Figure 1 shows the working principle of OBD system. The exhaust emission of a vehicle will be controlled primarily by Engine Control Unit (ECU) and Exhaust Gas After Treatment Control (EGAS CU). These two control units determine the combined operating strategies of the engine and after treatment device. Figure 1 Modern Control Architecture for OBD System in Commercial vehicle [1]
Technical Paper

Severity Study of Conventional Rollover vs. Flat Ground Rollover

2013-11-27
2013-01-2785
CAE based methodologies for structural analysis has improved considerably and is now commonly used for product development. This methodology can also be used effectively for certification of products against safety standards requiring structural performance. Use of CAE can address the issue of certifying a large number of product variants without the need of expensive and destructive physical tests. The probability and variation in rollover accident varies with different bus application. This paper discuss on the major change in the requirement between flat rollover with the convention rollover over 800mm ditch. It also discusses on the severity of rollover in both rollover scenarios for intercity applications using simulation techniques.
Technical Paper

Effects of Standardisationon Suspension and Steering Kinematics on Diverse Vehicle Architecture

2013-11-27
2013-01-2846
Automotive industry is progressively embracing newer technology for buses, as they are increasingly becoming the backbone of urban transportation. Buses are generally classified based on floor heights, lengths, seating capacity and applications besides lot of other parameters. Generally low floor / low entry buses are used for city transportation, while high floor / high deck buses are used for inter urban and intercity transportation. Yet in a few developing and underdeveloped geographies across the globe, high deck or the semi low floor buses are still used for city/urban transportation. There could be a lot of reasons like infrastructure limitations, the cost of ownership or in some cases even the topology of these geographies could be unfriendly towards low floor buses and low ground clearances. Varying customer requirements, applications and environmental factors necessitates a broad range of offerings from any bus OEM.
Technical Paper

Natural Gas Vehicle Safety Requirements in India, Europe and United States

2013-11-27
2013-01-2815
Natural gas (CNG) vehicles have been introduced in many parts of world including India, Europe and United States and achieved tremendous success in addressing the energy security and pollution challenges. This paper describes in detail the safety requirements for CNG vehicles in India, Europe and United States. Various safety and design requirements for CNG fuel system components such as gas cylinders, cylinder valves, fuel lines, filling connection, pressure regulator, gas-air mixer, electrical systems, are explained. The safety requirements described in ISO standards, UN-ECE standards, USA FMVSS, NFPA standards and Indian Standards are compared and discussed in detail. It also specifies the procedure for commissioning and installation of CNG vehicles. Further, it is concluded that all these international standards for CNG vehicles have adequate provisions with regard to impact protection, passenger safety and fire safety.
Technical Paper

Recommendations to Curb Overloading of Vehicles in India

2013-11-27
2013-01-2766
Overloading is not only a problem for larger goods vehicles, it is equally a problem for smaller vehicles, such as vans, cars and passenger carrying vehicles. Reports indicate that nearly 70% of all traffic on national highways comprise of cargo vehicles while 22% of cargo vehicles are involved in road accidents. Overloading increases the risk of traffic accidents and causes excessive wear and damage to roads, bridges, pavements etc. This paper specifies in detail the existing Indian Legislation on Overloading, different methods of monitoring, Vehicle Overload Control in other countries and India recommendations to curb Overloading of vehicles.
Technical Paper

Evolution of Bus Design in India

2013-11-27
2013-01-2764
Buses have been main means of mass transport in organized as well as unorganized sectors in India. Though the art and science of Chassis Designing had been practiced and matured by all Indian OEMs, Body design had long not been accorded high priority by them. Till 1989, there was no comprehensive set of rules enforced. Bus designs were developed with scant regard for safety and emission. OEMs sold their products in the form of drive away chassis and the Body Design & Body Building was largely left to Body Builders, many of whom employed poor design, build and quality control practices. Spurious materials, parts, non-uniform construction resulted in number of accidents and many of them were fatal. Central Motor Vehicle Rules (CMVR) kicked-in 1st July 1989. With roll out of CMVR, various safety related features like entry/exit door, emergency exits, window frames, their locations, dimensions and designs were defined.
Technical Paper

FE Analysis of ECER 29 Load Cases and its Correlation with Test Results

2013-11-27
2013-01-2806
The application of virtual simulations of crash has become an integral part of the vehicle development process. Virtual simulation offers opportunities to reduce development time and the number of physical prototypes consumed for design verification and validation. With the continuously increase of new accident and regulatory scenarios the dependency to virtual simulation and validation is becoming an inseparable factor in product development. This paper presents simulations that are performed to verify various safety aspects to ensure crashworthiness of the truck cabin. The cabin structure was evaluated for various load cases as per ECER 29 rev 2.0 safety regulation [1]. The FE model and simulation methodology was validated through physical testing and correlated for frontal impact test and roof strength test as per AIS 029/ECE-R 29 rev 2.0 [2]. Paper also discuss on the issue faced in correlation of test vs. Virtual validation using explicit solver.
X