Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Characterization of Vertical Dynamics of a Multi-Purpose Tractor with Static and Dynamic Experimental Tests

2023-04-11
2023-01-0177
Multi-purpose agricultural tractors are vehicles that are usually used in rough paths and on off-road situations characterized by strong slope variations. The main feature of this kind of vehicles is the stability in working conditions to avoid overturning while it is on duty. This characteristic is given by the interaction between the suspension system and the vehicle frame. Due to the limited size of this kind of vehicle, the stability feature could be given by chassis deformation or using a two-piece frame connected by a spherical joint. This paper presents the validation of a numerical lumped-parameters model able to reproduce the vertical dynamics of a multi-purpose tractor featured by a yielding chassis. The unknown model parameters have been estimated firstly with static tests to study the vertical tire and suspension stiffnesses. The dynamic tests using a four-post-test rig have been performed to tune the unknown dynamic parameters.
Technical Paper

Impact of Different LCI Modelling Scenarios on the LCA Results, A Case Study for the Automotive Sector

2023-04-11
2023-01-0884
Since vehicles are comprised of thousands of components, it is essential to reduce the Life Cycle Inventory (LCI) modelling workload. This study aims to compare different LCI modeling workload-reducing scenarios to provide a trade-off between the workload efforts and result accuracy. To achieve the optimal balance between computational effort and data specification requirements, the driver seat is used as a case study, instead of the entire vehicle. When all the components of a conventional light-duty commercial vehicle are sorted by mass descending order, seats are among the first five. In addition, unlike the other components, seats are comprised of metals as well as a wide range of plastics and textiles, making them a representative test case for a general problem formulation. In this way, methodology and outcomes can be reasonably extended to the entire vehicle.
Technical Paper

Subjective-Objective Ride Comfort Assessment of Farm Tractors

2016-04-05
2016-01-1437
The paper is focused on both the subjective and the objective ride comfort evaluation of farm tractors. The experimental measurement of the relevant accelerations occurring at the tractor body, at the cabin and at the seat was performed on a number of different farm tractors. A subjective rating of the ride comfort level was performed by considering five different drivers. The comfort index was computed according with ISO 2631 and other standards. The acceleration of the seated subject was computed by means of a proper mechanical model of a farm tractor and derived at different positions on the subject body. It turned out that the acceleration of the lower torso was particularly relevant for establishing a matching between the subjective perception and the objective measurement and computation. A number of indices have been derived from the measured data which are able to correlate the subjective driver feeling with the measured accelerations.
Technical Paper

Lightweight Design and Construction of Aluminum Wheels

2016-04-05
2016-01-1575
In this paper the lightweight design and construction of road vehicle aluminum wheels is dealt with, referring particularly to safety. Dedicated experimental tests aimed at assessing the fatigue life behavior of aluminum alloy A356 - T6 have been performed. Cylindrical specimens have been extracted from three different locations in the wheel. Fully reversed strain-controlled and load-controlled fatigue tests have been performed and the stress/strain-life curves on the three areas of the wheel have been computed and compared. The constant amplitude rotary bending fatigue test of the wheel has been simulated by means of Finite Element method. The FE model has been validated by measuring the strain at several points of the wheel during the actual test. From the FE model, the stress tensor time history on the whole wheel over a loading cycle has been extracted.
Technical Paper

Numerical Investigation of the Vertical Dynamics of an Agricultural Vehicle Operating on Deformable Soil

2012-04-16
2012-01-0764
This work focuses on the analysis of the vertical dynamics of an agricultural tractor, investigating the influence of suspensions' parameters on riding comfort and contact forces. The use of lugged tires coupled with the operation over banked, irregular and deformable tracks, determines significant levels of vertical acceleration over several components of the tractor. These operating conditions have a direct effect on the driver, whose alertness and efficiency are undermined by the exposure to high levels of acceleration for a long time. Secondly, variations of the normal and traction forces provided by the tires affect the quality of tillage and other operations. The paper presents a multi-body vehicle model of a tractor interfaced with a tire-soil contact model allowing to take into account soil's deformation and tread pattern design.
X