Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Study on a Vehicle-Type-Based Car-Following Model using the Long Short-Term Memory Method

2023-04-11
2023-01-0680
For car-following models, the car-following characteristics differ depending on the vehicle type, such as passenger cars, motorcycles, and trucks. Therefore, constructing a model for each category is essential. To that end, various modeling methods have been proposed; however, herein, we particularly focused on the long short-term memory (LSTM), which is the best method for forecasting long-term time-series data.[1, 2] The objective of this study was to construct a car-following model for each vehicle category using the LSTM and to evaluate the model accuracy for each vehicle category. In this study, US-101 and I-80 data provided by the next-generation simulation (NGSIM), which is based on natural traffic flow data, were used. In the NGSIM, only car-following situations were selected as car-following data, and these were classified into the vehicle type: motorcycles, passenger cars, and trucks.
Technical Paper

Construction of Driver Models for Cut-in of Other Vehicles in Car-Following Situations

2023-04-11
2023-01-0575
The purpose of this study was to construct driver models using long short-term memory (LSTM) in car-following situations, where other vehicles change lanes and cut in front of the ego vehicle (EGV). The development of autonomous vehicle systems (AVSs) using personalized driver models based on the individual driving characteristics of drivers is expected to reduce their discomfort with vehicle control systems. The driving characteristics of human drivers must be considered in such AVSs. In this study, we experimentally measured data from the EGV and other vehicles using a driving simulator consisting of a six-axis motion device and turntable. The experimental scenario simulated a traffic congestion scenario on a straight section of a highway, where a cut-in vehicle (CIV) changed lanes from an adjacent lane and entered in between the EGV and preceding vehicle (PRV).
Journal Article

Construction of Driver Models for Overtaking Behavior Using LSTM

2023-04-11
2023-01-0794
This study aimed to construct driver models for overtaking behavior using long short-term memory (LSTM). During the overtaking maneuver, an ego vehicle changes lanes to the overtaking lane while paying attention to both the preceding vehicle in the travel lane and the following vehicle in the overtaking lane and returns to the travel lane after overtaking the preceding vehicle in the travel lane. This scenario was segregated into four phases in this study: Car-Following, Lane-Change-1, Overtaking, and Lane-Change-2. In the Car-Following phase, the ego vehicle follows the preceding vehicle in the travel lane. Meanwhile, in the Lane-Change-1 phase, the ego vehicle changes from the travel lane to the overtaking lane. Overtaking is the phase in which the ego vehicle in the overtaking lane overtakes the preceding vehicle in the travel lane.
Journal Article

Construction of Personalized Driver Models Based on LSTM Using Driving Simulator

2022-03-29
2022-01-0812
Many automated driving technologies have been developed and are continuing to be implemented for practical use. Among them a driver model is used in automated driving and driver assistance systems to control the longitudinal and lateral directions of the vehicles that reflect the characteristics of individual drivers. To this end, personalized driver models are constructed in this study using long short-term memory (LSTM). The driver models include individual driving characteristics and adapt system control to help minimize discomfort and nuisance to drivers. LSTM is used to construct the driver model, which includes time-series data processing. LSTM models have been used to investigate pedestrian behaviors and develop driver behavior models in previous studies. We measure the driving operation data of the driver using a driving simulator (DS).
X