Refine Your Search

Topic

Author

Search Results

Standard

Guidelines for Liquid Level Indicators

2023-10-06
CURRENT
J48_202310
This SAE Recommended Practice pertains to liquid level determination for any fluid compartment of off-road work machines as defined in SAE J1116 and ISO 6165.
Standard

Cast Shot and Grit Size Specifications for Cleaning and Peening

2023-06-27
CURRENT
J444_202306
This SAE Recommended Practice pertains to blast cleaning and shot peening and provides for standard cast shot and grit size numbers. For shot, this number corresponds with the opening of the nominal test sieve, in ten thousandths of inches1, preceded by an S. For grit, this number corresponds with the sieve designation of the nominal test sieve with the prefix G added. These sieves are in accordance with ASTM E11. The accompanying shot and grit classifications and size designations were formulated by representatives of shot and grit suppliers, equipment manufacturers, and automotive users.
Standard

Alarm - Backup - Electric Laboratory Performance Testing

2023-06-27
CURRENT
J994_202306
The scope of this SAE Standard is the definition of the functional, environmental, and life cycle test requirements for electrically operated backup alarm devices primarily intended for use on off-road, self-propelled work machines as defined by SAE J1116 (limited to categories of (1) construction, and (2) general purpose industrial).
Standard

Brake Dynamometer Squeal Noise Test Procedure for Commercial Vehicles with Air Brakes

2023-06-02
CURRENT
J3165_202210
This SAE Recommended Practice applies to commercial vehicles above 4540 kg of gross vehicle weight rating equipped with air brakes used under normal operating conditions. The procedure incorporates high and low-temperature test matrices, but does not fully account for the effects of the environment on brake squeal. Much research is currently underway in this area. This document defines brake squeal as a peak noise level of at least 80 dB(A) between 500 Hz and 17 kHz for air disc and drum brakes on on-road vehicles.
Standard

Fuel Economy Measurement Road Test Procedure

2023-05-10
CURRENT
J1078_202303
This SAE Standard incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers.1
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Infrastructure-Mounted Pantograph (Cross-Rail) Connection

2023-05-05
CURRENT
J3105/1_202305
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/1 details the infrastructure-mounted pantograph, or cross-rail connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated connection device (ACD) based on a cross-rail design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Test Method for Measuring Power Consumption of Hydraulic Pumps for Trucks and Buses

2023-05-01
CURRENT
J1341_202305
This document covers evaluation techniques for determining the power consumption characteristics of engine driven hydraulic pumps used on heavy-duty trucks and buses. The testing technique outlined in this SAE Recommended Practice was developed as part of an overall program for testing and evaluating fuel consumption of heavy-duty trucks and buses. The technique outlined in this document provides a description of the test to be run to determine power consumption of these engine driven components, the type of equipment and facilities which are generally required to perform these tests are discussed in SAE J745. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation.
Standard

Test Method for Measuring Power Consumption of Air Conditioning and Brake Compressors for Trucks and Buses

2023-05-01
CURRENT
J1340_202305
The testing techniques outlined in this SAE Recommended Practice were developed as part of an overall program tor testing and evaluating fuel consumption of heavy duty trucks and buses. The technique outlined in this document provides a general description of the type of equipment and facility which is necessary to determine the power consumption of these engine-driven components. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation. If specific vehicle application is not known, see SAE J1343.
Standard

Dynamic Wireless Power Transfer for both Light and Heavy Duty Vehicles (SAE RP J2954/3)

2023-04-20
WIP
J2954/3
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for Light Duty EVs and SAE RP J2954/2 establishes the same for Heavy Duty. SAE RP SAE J2954. SAE RP J2954/3 establishes interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for dynamic wireless power transfer (D-WPT) of both light and heavy duty plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels as SAE J2954/1 & SAE J2954/2 with some variations. A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. SAE J2954/3 addresses unidirectional charging, from grid to vehicle; bidirectional energy transfer may be evaluated for a future standard.
Standard

Wireless Power Transfer for Heavy-Duty Electric Vehicles

2022-12-16
CURRENT
J2954/2_202212
The published SAE J2954 standard established an industry-wide specification that defines acceptable criteria for interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for wireless power transfer (WPT) for light-duty plug-in electric vehicles. This SAE Information Report, SAE J2954/2, defines new power transfer levels in the higher power ranges needed for heavy-duty electric vehicles. This document addresses the requirements based on these charge levels and different vehicle applications as a first step in the process of completing a standard that the industry can use, both for private (fleet) and public wireless power transfer, including for charging electric vehicle batteries. This document is the first step in a process towards HD static and dynamic WPT. This document lacks specific requirements and solutions, for which field data is needed.
Standard

Contaminants for Testing Air Brake Components and Auxiliary Pneumatic Devices - Truck and Bus

2022-11-22
CURRENT
J2024_202211
This SAE Information Report establishes a minimum level of uniform recipes for contaminants which may be used when durability testing pneumatic components to obtain additional information on how a device may perform under more true-to-life operating conditions. This type of contamination testing, however, is not meant to replace the type of performance testing described in SAE J1409 and SAE J1410. Durability testing in the presence of contamination will yield results more reflective of actual in-service field conditions and provide an additional evaluation of pneumatic devices. While the contaminant supply rate and other test criteria of the device being tested must be set by the device manufacturer or user, the items covered in this document will be:
Standard

Fueling Protocol for Gaseous Hydrogen Powered Industrial Trucks

2022-09-16
CURRENT
J2601/3_202209
This document establishes safety limits and performance requirements for gaseous hydrogen fuel dispensers used to fuel Hydrogen Powered Industrial Trucks (HPITs). It also describes several example fueling methods for gaseous hydrogen dispensers serving HPIT vehicles. SAE J2601-3 offers performance based fueling methods and provides guidance to fueling system builders as well as suppliers of hydrogen powered industrial trucks and operators of the hydrogen powered vehicle fleet(s). This fueling protocol for HPITs can support a wide range of hydrogen fuel cell hybrid electric vehicles including fork lifts, tractors, pallet jacks, on and off road utility, and specialty vehicles of all types. The mechanical connector geometry for H25 and H35 connectors are defined in SAE J2600 Compressed Hydrogen Surface Vehicle Refueling Connection Devices.
Standard

Low-Speed Vehicles

2022-08-19
CURRENT
J2358_202208
This SAE Standard defines the safety and performance requirements for low-speed vehicles (LSVs). The safety specifications in this document apply to any powered vehicle with a minimum of four wheels, a maximum level ground speed of more than 32 km/h (20 mph) but not more than 40 km/h (25 mph), and a maximum gross vehicle weight of 1361 kg (3000 pounds), that is intended for operating on designated roadways where permitted by law.
Standard

Horn - Forward Warning - Electric - Performance, Test, and Application

2022-08-05
CURRENT
J1105_202208
The scope of this SAE Standard is the definition of the functional, environmental, and life cycle test requirements for electrically operated, operator controlled forward warning horn devices, primarily intended for use on self-propelled, work machines as defined by SAE J1116 (limited to categories of (1) construction and (2) general purpose industrial).
Standard

Assessment of Evaluation Method Types to Determine Energy Efficiency of Multi-Vehicle Systems

2022-06-09
CURRENT
J3147_202206
This document provides an assessment of current engineering test and simulation standards and methods used to determine the fuel efficiency, freight efficiency and emissions of single-vehicle systems comprised primarily of on-road trucks and buses with GVWR of more than 10000 pounds (4535 kg). This document provides guidance on the applicability and use of each test and simulation standard, method and technology discussed for multi-vehicle systems.
Standard

Storage Batteries for Off-Road Self-Propelled Work Machines

2022-06-02
CURRENT
J930_202206
This SAE Standard applies to all types of heavy-duty storage batteries for use on off-road machines as described in SAE J1116. Included are definitions of industry terms, test procedures, general requirements, application recommendations, standard sizes, overall dimensions, and electrical values.
Standard

SAE Fuel Consumption Test Procedure (Engineering Method)

2022-05-24
CURRENT
J1526_202205
This document describes a fuel-consumption test procedure that utilizes industry accepted data collection and statistical analysis methods to determine the difference in fuel consumption between vehicles with a gross vehicle weight of more than 10000 pounds. This test procedure can be used for an evaluation of two or more different vehicles but is not to be used to evaluate a component change. Although on-road testing is allowed, track testing is the preferred method because it has the greatest opportunity to minimize weather and traffic influences on the variability of the results. All tests shall be conducted in accordance with the weather constraints described within this procedure and shall be supported by collected data and analysis. This document provides information that may be used in concert with SAE Recommended Practices SAE J1264, SAE J1252, SAE J1321, and SAE J2966, as well as additional current and future aerodynamic and vehicle performance SAE standards.
Standard

Operator Sound Pressure Level Exposure Measurement Procedure for Powered Recreational Craft

2022-04-25
CURRENT
J1281_202204
This SAE Standard establishes the procedure for determining the operator duty cycle sound pressure level Lodc to which operators of powered recreational craft up to 24 m in length are exposed during typical operation as determined by marine engine duty cycle studies. This document describes the instrumentation, the required calibration procedures, the test site, the specifications for “standard craft”, the craft operating conditions, microphone positioning, test procedure, engine speeds for each of the Duty Cycle modes and the formula and table for calculating the Duty Cycle operator ear sound pressure level. This document is subject to change to keep pace with technical advances as well as other international standards and practices. Changes in this Revision: The sound pressure level measurements performed while applying this document are based on the Five-Mode Marine Engine Duty Cycle instead of a single engine speed.
X