Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Efficient Fatigue Performance Dominated Optimization Method for Heavy-Duty Vehicle Suspension Brackets under Proving Ground Load

2024-04-09
2024-01-2256
Lightweight design is a key factor in general engineering design practice, however, it often conflicts with fatigue durability. This paper presents a way for improving the effectiveness of fatigue performance dominated optimization, demonstrated through a case study on suspension brackets for heavy-duty vehicles. This case study is based on random load data collected from fatigue durability tests in proving grounds, and fatigue failures of the heavy-duty vehicle suspension brackets were observed and recorded during the tests. Multi-objective fatigue optimization was introduced by employing multiaxial time-domain fatigue analysis under random loads combined with the non-dominated sorting genetic algorithm II with archives.
Technical Paper

Combination of Dissimilar Overlay Materials for Engine Bearing Life Extension

2024-04-09
2024-01-2066
Nowadays, Bismuth (Bi) is being applied as an overlay material for engine bearings instead of Lead (Pb) which is an environmentally harmful material. Bi overlay has already been a solid performer in some automotive engine sectors due to its superior load carrying capacity and good robustness characteristic which are necessary to maintain its longevity during the lifetime of engines. The replacement is also seen on relatively larger size engines, such as Trucks and Off-highway heavy duty applications. Basically, these applications require higher power output than passenger cars, and the expected component lifecycle becomes longer. Though Bi has similar material characteristic to traditional Pb, it becomes challenging for the material alone to satisfy these requirements. Polymer overlay is known for its superior anti-wear performance and longer lifetime due to less adhesion against a steel counterpart than metallic materials (included Bi).
Technical Paper

Simulation of Crush Behavior and Energy Absorption of Vehicle Li-Ion Battery Module with Prismatic Cells

2024-04-09
2024-01-2492
Lithium-ion batteries serve as the main power source for contemporary electric vehicles. Safeguarding these batteries against damage is paramount, as it can trigger accelerated performance deterioration, potential fire hazards, environmental threats, and more. This study explores damage progression of a commercial vehicle lithium-ion battery module containing prismatic cells under indentation crush loading. We employed computational simulations of mechanical loading tests to investigate this behavior. Physical tests involved subjecting modules to low-speed (0.05 m/s) indentations using a V-shaped stainless-steel wedge, under six unique loading conditions. During the tests, force, and voltage change with wedge displacement were monitored. Utilizing experimental insights, we constructed a finite element model, which included key components of the battery module, such as the prismatic cells, steel frames, and various plastic parts.
Technical Paper

Wheel Hub Cracks of Heavy-Duty Vehicles due to Drum Brake Shoe-Lining Wear, Friction, and Self-Lock

2024-03-21
2024-01-5037
Wheel hubs with drum brakes of heavy-duty vehicles rarely broke, but some suddenly cracked in the 2000s. The cause of damage was said to be a lack of hub strength. However, the case was suspicious because the hubs were produced according to the design guidelines by the JSAE. In the 1990s, brake shoe-lining materials were changed from asbestos to non-asbestos for people’s health. The brake squeal and abnormal self-lock frequently occurred because of the increased friction coefficient between drum and shoe lining in the case of the leading–trailing type. The mechanical friction coefficient changes with the material and the contact angle, which varies with the wear of shoe lining and the drum temperature. In the previous report, the deformation of the wheel hub under the abnormal self-lock was verified by observing the change of hub attitude in model test equipment.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Technical Paper

Analyzing Mechanical Behaviour of Aluminium Alloy Composites Reinforced with Ceramics

2024-02-23
2023-01-5110
Aluminium composites are remarkably used in automotive, aerospace, and agricultural sectors because of their lightweight with definable mechanical properties. The stir casting route was followed to fabricate cylindrical samples with base aluminium alloy LM4, LM4/SiC, LM4/Al2O3, and LM4/SiC/Al2O3. The tensile strength, compressive strength, hardness, and micro-structural analysis were performed on samples and Finite element analysis (FEA) was adopted to predict the failure modes of composites. The composites experimental results were found to be in line with the FEA results, however, the LM4/SiC/Al2O3 revealed better results on the mechanical properties when compared with other composite configurations. The mechanical properties improvement like hardness 5%-11%, tensile strength 10.26%-20.67%, compressive strength 15.19% - 32.58% and 71.52 - 82.1% reduction in dimension have been achieved in LM4/SiC/Al2O3 composite comparing to base metal.
Technical Paper

Microstructure, Worn Surface, Wear Assessment and Taguchi’s Approach of Titanium Alloy Hybrid Metal Matrix Composites for Automotive Applications

2024-02-23
2023-01-5103
Lightweight materials are in great demand in the automotive sector to enhance system performance. The automotive sector uses composite materials to strengthen the physical and mechanical qualities of light weight materials and to improve their functionality. Automotive elements such as the body shell, braking system, steering, engine, battery, seat, dashboard, bumper, wheel, door panelling, and gearbox are made of lightweight materials. Lightweight automotive metals are gradually replacing low-carbon steel and cast iron in automobile manufacture. Aluminium alloys, Magnesium alloys, Titanium alloys, advanced high-strength steel, Ultra-high strength steel, carbon fiber-reinforced polymers, and polymer composites are examples of materials used for light weighing or automobile decreased weight. The ever-present demand for fuel-efficient and ecologically friendly transport vehicles has heightened awareness of lowering weight and performance development.
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Technical Paper

Virtual Prediction of Tractor Front Axle Load and Fatigue Life in Front Loader Application and Validating with Field Measurements

2024-02-06
2024-01-5012
When a specialty tractor is operated by mounting the front loader or backhoes, the loads are distributed proportionately to the front and rear axles. The maximum load and fatigue life were identified as the main parameters in predicting fatigue failure. This paper mainly focuses on predicting front axle loads and fatigue life in front loader applications. To design a new front axle for the loader application, an existing front axle assembly that was designed for orchard, sprayer, and small farm application is selected for study and to extend it for front loader application with minimal design modifications. The major challenge is to estimate the dynamic loads coming to the front axle due to the front loader application and validate it for a different set of load cases as per the design verification plan. Hence a methodology was framed to estimate the actual loads using MBD, validate with field measurements, and verify the new front axle design using those loads in FEA.
Technical Paper

Geometry, Sizing and Optimization of Honeycomb Structures along with Embedded Metal Inserts on the Floor for Truck-Mounted Container Applications

2024-01-16
2024-26-0186
With the rise of worldwide trends towards light weighting and the move towards electric vehicles, it is now more important than ever for the automotive industry to develop and implement lightweight materials that will result in significant weight reduction and product improvements. A great deal of research has been done on how to best combine and configure honeycomb cores with the right face sheets for Truck-Mounted Container Applications. Honeycomb structures possess the ability to bring about superior structural rigidity when the core parameters are selected and optimized based on the automotive application requirements.
Technical Paper

Study on Contribution of Bogie Suspension Seating Configurations & V-Rod Forces on Life of Heavy Duty Bogie Rear Axle Casing – Analysis Using Road Simulator

2024-01-16
2024-26-0362
The Heavy Duty live rear axles in commercial vehicle helps to transmit the drive to the rear wheels and also carries vehicle load. The rear axle along with wheel assembly consists of axle casing, differential unit, half shafts, wheel hub, brake drum, brake chamber and wheels. It is one of the major safety critical element in any commercial vehicle. Based on the suspension type, rear axle housing also carries V rod & radius rod mountings & Spring Seat /Wear pad / Rubber Bolster (in case of bogie suspension). This paper abbreviates the contribution of bogie suspension seating configurations & V-rod Forces on life of heavy duty bogie rear axle casing. In-service DRT hot spot observations were reported on heavy duty rear axle on few models with bogie suspension. In order to find the root cause, devising a proper testing and analysis method is of prime importance. An extensive effort was made to device test methodology based on customer application and field visits.
Journal Article

TOC

2023-12-18
Abstract TOC
Magazine

SAE Truck & Off-Highway Engineering: December 2023

2023-12-14
Perkins bets big on smaller engine The new 2600 Series 13-liter engine for off-highway machines will do more with less thanks to variable geometry turbocharging. BorgWarner targets more- sustainable e-motors System optimization and lifecycle analysis are key to taking heavy rare earths out of next-gen motors for commercial EVs. Enhancing digital platforms with CT data analysis TE Connectivity gains critical insights using Volume Graphics software throughout design, simulation and manufacturing.
Technical Paper

Austempered Ductile Iron, Green Design Alternative for Circular Economy

2023-11-10
2023-28-0134
In the current scenario, manufacturing of heavier products generates colossal waste, generates more CO2 emission, and negatively affects the environment. Customers not only pay higher product costs but also higher operational costs. This in turn demands the need for more recycling. Advanced high strength materials are a key solution to applications demanding higher strength, stiffness, durability & wear requirement, whereas low density materials like aluminium and magnesium won’t be a sustainable choice. With more and more battery electric & fuel cell vehicles, “light weighting” is a key priority. Austempered Ductile Iron (ADI) has a great advantage of superior mechanical properties compared to conventional ductile iron, aluminium alloys and even some steel forgings. Typically, ADI is used for high wear applications, whereas this paper will demonstrate the potential of using ADI for Structural applications.
Magazine

SAE Truck & Off-Highway Engineering: August 2023

2023-08-10
Enhancing truck-sensor modularity Kodiak Robotics' fifth-generation sensor stack and new SensorPods boost sensor and GPU performance and improve power efficiency. Bosch high on hydrogen The supplier is committed to all facets of the H2 economy as volume production of its power module kicks off for Nikola's Class 8 fuel-cell truck. Constructing bus structures with stainless steel Outokumpu and collaborators show a possible weight reduction of up to 35% by using high-strength stainless steel in place of carbon steel. Volta Zero is U.S. bound The startup plans to apply lessons learned in Europe to the U.S. market, bringing a "small fleet" of electric trucks for potential customers by the end of the year.
Technical Paper

Front Spring Development & Validation for Medium Duty Truck

2023-07-25
2023-36-0368
Improvements in component/system design is a daily challenge these days, always looking for high performance, reduced mass and low costs. The source for the best fit between these factors, coupled with adequate durability performance, is crucial to the success of a given product and this is what motivates engineering teams around the world. The demand for efficient projects with short deadlines for validation and certification is huge and simulation tools focused on accelerated durability and virtual validation are increasingly being used. When developing a new spring for commercial vehicles, lessons learned from the actual loads applied to the suspension are the “key” to a successful project. The loads/stresses from the ground (vertical loads, lateral loads, longitudinal and braking loads) are quite high and, consequently, relevant to the proper definition of the design of the suspension components.
Standard

Cast Shot and Grit Size Specifications for Cleaning and Peening

2023-06-27
CURRENT
J444_202306
This SAE Recommended Practice pertains to blast cleaning and shot peening and provides for standard cast shot and grit size numbers. For shot, this number corresponds with the opening of the nominal test sieve, in ten thousandths of inches1, preceded by an S. For grit, this number corresponds with the sieve designation of the nominal test sieve with the prefix G added. These sieves are in accordance with ASTM E11. The accompanying shot and grit classifications and size designations were formulated by representatives of shot and grit suppliers, equipment manufacturers, and automotive users.
X