Refine Your Search

Topic

Search Results

Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Technical Paper

Analysis of Geo-Location Data to Understand Power and Energy Requirements for Main Battle Tanks

2024-04-09
2024-01-2658
Tanks play a pivotal role in swiftly deploying firepower across dynamic battlefields. The core of tank mobility lies within their powertrains, driven by diesel engines or gas turbines. To better understand the benefits of each power system, this study uses geo-location data from the National Training Center to understand the power and energy requirements from a main battle tank over an 18-day rotation. This paper details the extraction, cleaning, and analysis of the geo-location data to produce a series of representative drive cycles for an NTC rotation. These drive-cycles serve as a basis for evaluating powertrain demands, chiefly focusing on fuel efficiency. Notably, findings reveal that substantial idling periods in tank operations contribute to diesel engines exhibiting notably lower fuel consumption compared to gas turbines. Nonetheless, gas turbines present several merits over diesel engines, notably an enhanced power-to-weight ratio and superior power delivery.
Journal Article

TOC

2024-02-12
Abstract TOC
Standard

A Guide to APU Health Management

2023-09-15
CURRENT
AIR5317A
AIR5317 establishes the foundation for developing a successful APU health management capability for any commercial or military operator, flying fixed wing aircraft or rotorcraft. This AIR provides guidance for demonstrating business value through improved dispatch reliability, fewer service interruptions, and lower maintenance costs and for satisfying Extended Operations (ETOPS) availability and compliance requirements.
Journal Article

Infrared Signature of Fixed and Variable Area C-D Nozzle of Aircraft Engine

2023-01-02
Abstract The use of converging-diverging (C-D) variable area nozzle (VAN) in military aeroengines is now common, as it can give optimal expansion and control over engine back pressure, for a wide range of engine operations. At higher main combustion temperatures (desired for supercruise), an increase in the nozzle expansion ratio is needed for optimum performance. But changes in the nozzle throat and exit areas affect the visibility of engine hot parts as the diverging section of the nozzle is visible for a full range of view angle from the rear aspect. The solid angle subtended by engine hot parts varies with change in visibility, which affects the aircraft infrared (IR) signature from the rear aspect. This study compares the performances of fixed and variable area nozzles (FAN and VAN) in terms of engine thrust and IR signature of the engine exhaust system in the boresight for the same increase in combustion temperature.
Standard

Automotive Gear Lubricants for Commercial and Military Use

2022-05-20
CURRENT
J2360_202205
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI).
Standard

Reliability Physics Analysis of Electrical, Electronic, and Electromechanical Equipment, Modules and Components

2021-12-30
CURRENT
J3168_202112
This recommended practice has been developed for use in any EEE system used in the AADHP industries. RPA is especially important to AADHP systems, which are often safety critical applications that must operate for long times in rugged environments. These EEE systems often use EEE components that were originally designed and produced for more benign consumer applications. Although the focus of this recommended practice is on AADHP applications, the process described herein is not limited to AADHP and may be used for EEE systems and components in any industry.
Standard

Automotive Gear Lubricants for Commercial and Military Use

2021-01-27
HISTORICAL
J2360_202101
The gear lubricants covered by this standard exceed American Petroleum Institute (API) Service Classification API GL-5 and are intended for hypoid-type, automotive gear units, operating under conditions of high-speed/shock load and low-speed/high-torque. These lubricants may be appropriate for other gear applications where the position of the shafts relative to each other and the type of gear flank contact involve a large percentage of sliding contact. Such applications typically require extreme pressure (EP) additives to prevent the adhesion and subsequent tearing away of material from the loaded gear flanks. These lubricants are not appropriate for the lubrication of worm gears. Appendix A is a mandatory part of this standard. The information contained in Appendix A is intended for the demonstration of compliance with the requirements of this standard and for listing on the Qualified Products List (QPL) administered by the Lubricant Review Institute (LRI).
Technical Paper

Comparison and Evaluation of Performance, Combustion and Particle Emissions of Diesel and Gasoline in a Military Heavy Duty 720 kW CIDI Engine Applying EGR

2020-09-15
2020-01-2057
Investigating the impact of Gasoline fuel on diesel engine performance and emission is very important for military heavy- duty combat vehicles. Gasoline has great potential as alternative fuel due to rapid depletion of petroleum reserves and stringent emission legislations, under multi fuel strategy program for military heavy- duty combat vehicle. There is a known torque, horsepower and fuel economy penalty associated with the operation of a diesel engine with Gasoline fuel. On the other hand, experimental studies have suggested that Gasoline fuel has the potential for lowering exhaust emissions, especially NOx, CO, CO2, HC and particulate matter as compared to diesel fuel. Recent emission legislations also restrict the total number of nano particles emitted in addition to particulate matter, which has adverse health impact.
X