Refine Your Search

Topic

Search Results

Technical Paper

Analysis of Geo-Location Data to Understand Power and Energy Requirements for Main Battle Tanks

2024-04-09
2024-01-2658
Tanks play a pivotal role in swiftly deploying firepower across dynamic battlefields. The core of tank mobility lies within their powertrains, driven by diesel engines or gas turbines. To better understand the benefits of each power system, this study uses geo-location data from the National Training Center to understand the power and energy requirements from a main battle tank over an 18-day rotation. This paper details the extraction, cleaning, and analysis of the geo-location data to produce a series of representative drive cycles for an NTC rotation. These drive-cycles serve as a basis for evaluating powertrain demands, chiefly focusing on fuel efficiency. Notably, findings reveal that substantial idling periods in tank operations contribute to diesel engines exhibiting notably lower fuel consumption compared to gas turbines. Nonetheless, gas turbines present several merits over diesel engines, notably an enhanced power-to-weight ratio and superior power delivery.
Standard

A Guide to APU Health Management

2023-09-15
CURRENT
AIR5317A
AIR5317 establishes the foundation for developing a successful APU health management capability for any commercial or military operator, flying fixed wing aircraft or rotorcraft. This AIR provides guidance for demonstrating business value through improved dispatch reliability, fewer service interruptions, and lower maintenance costs and for satisfying Extended Operations (ETOPS) availability and compliance requirements.
Technical Paper

Design and Development of Fuel Tank for High Mobility Military Vehicle

2023-05-25
2023-28-1342
Fuel tank is considered as safety component in the vehicle, and it has to be tested to meet the safety requirements as per AIS 095. Earlier, fuel tanks were manufactured by using Hot dipped cold rolled steel material and the weld zones are applied with Anti-corrosive coating. Few fuel tanks were reported with Corrosion problems. The root cause analysis was carried out considering the raw material, manufacturing process, transpiration, storage and usage. As an improvement, the new fuel tank is designed to eliminate the limitations of the existing fuel tank. 3D modeling was done to check space and mounting requirement in the layout and used for volume calculations. FE analysis was performed to check structural stability. Emphasis given on Interchange-ability to cater the new fuel tanks in place of old as spares requirement. The fuel tank has developed with Alumina steel material.
Journal Article

Data Reduction Methods to Improve Computation Time for Calibration of Piston Thermal Models

2023-04-11
2023-01-0112
Fatigue analysis of pistons is reliant on an accurate representation of the high temperatures to which they are exposed. It can be difficult to represent this accurately, because instrumented tests to validate piston thermal models typically include only measurements near the piston crown and there are many unknown backside heat transfer coefficients (HTCs). Previously, a methodology was proposed to aid in the estimation of HTCs for backside convection boundary conditions of a stratified charge compression ignition (SCCI) piston. This methodology relies on Bayesian inference of backside HTC using a co-simulation between computational fluid dynamics (CFD) and finite element analysis (FEA) solvers. Although this methodology primarily utilizes the more computationally efficient FEA model for the iterations in the calibration, this can still be a computationally expensive process.
Journal Article

Numerical Analysis of Armored Fighting Vehicle Escape Hatch Subjected to Mine Blast Loading Using Coupled Eulerian-Lagrangian Technique

2023-03-30
Abstract This article describes the research work taken to compare the effect of air blast and surface-buried mine blast loading on an armored fighting vehicle (AFV) escape hatch, using the coupled Eulerian-Lagrangian (CEL) technique. Two types of escape hatch were considered for the study, namely, the flat plate version and double-side curved-plate version. To evaluate the research methodology used in this investigation, initially, a published experimental work on a circular plate subjected to air blast was chosen and a benchmark simulation was carried out using the CEL technique to establish the simulation procedure. Then the established procedure was utilized for further analysis. It was observed that the variation in the deformation between the published literature and the simulation work was well within the acceptable engineering limits.
Journal Article

Framework for Initializing the Conceptual Design of Hypersonic Aircraft

2023-01-18
Abstract To assist in initializing the conceptual design of hypersonic aircraft, we outline a new, systematic framework based on historical aircraft data and primarily composed of design data and regression models. It is a rapid, low-fidelity analysis to provide a starting point for the conceptual design process by (1) assessing the performance capabilities of four types of high-speed aircraft, (2) providing initial estimates for weights and geometry with uncertainty, and (3) exploring how changes in these affect performance within design spaces. Using this framework, an initial set of reasonable aircraft configurations is obtained based on speed, altitude, and payload requirements, which can serve to accelerate the design process and avoid unforeseen problems later in the design cycle. An example is provided to demonstrate the application of the framework to launch the conceptual design of a new hypersonic aircraft with a given set of mission requirements.
Journal Article

Infrared Signature of Fixed and Variable Area C-D Nozzle of Aircraft Engine

2023-01-02
Abstract The use of converging-diverging (C-D) variable area nozzle (VAN) in military aeroengines is now common, as it can give optimal expansion and control over engine back pressure, for a wide range of engine operations. At higher main combustion temperatures (desired for supercruise), an increase in the nozzle expansion ratio is needed for optimum performance. But changes in the nozzle throat and exit areas affect the visibility of engine hot parts as the diverging section of the nozzle is visible for a full range of view angle from the rear aspect. The solid angle subtended by engine hot parts varies with change in visibility, which affects the aircraft infrared (IR) signature from the rear aspect. This study compares the performances of fixed and variable area nozzles (FAN and VAN) in terms of engine thrust and IR signature of the engine exhaust system in the boresight for the same increase in combustion temperature.
Standard

Aircraft Flotation Analysis

2022-12-20
CURRENT
AIR1780B
This document is divided into five parts. The first part deals with flotation analysis features and definitions to acquaint the engineer with elements common to the various methods and the meanings of the terms used. The second part identifies and describes current flotation analysis methods. Due to the close relationship between flotation analysis and runway design, methods for the latter are also included in this document. As runway design criteria are occasionally used for flotation evaluation, including some for runways built to now obsolete criteria, a listing of the majority of these criteria constitutes the third part. The fourth part of this document tabulates the most relevant documents, categorizing them for commercial and civil versus military usage, by military service to be satisfied, and by type of pavement. This document concludes with brief elaborations of some concepts for broadening the analyst’s understanding of the subject.
X