Refine Your Search

Topic

Author

Search Results

Technical Paper

Terrain Streaming for Real-Time Vehicle Dynamics

2024-04-09
2024-01-2659
This paper describes an approach to integrating high-fidelity vehicle dynamics with a high-fidelity gaming engine, specifically with respect to terrain. The work is motivated by the experimental need to have both high-fidelity visual content with high-fidelity vehicle dynamics to drive a motion base simulator. To utilize a single source of terrain information, the problem requires the just-in-time sharing of terrain content between the gaming engine and the dynamics model. The solution is implemented as a client-server with the gaming engine acting as a stateless server and the dynamics acting as the client. The client is designed to actively maintain a locally cashed terrain grid around the vehicle and actively refresh it by polling the server in an on-demand mode of operation. The paper discusses the overall architecture, the protocol, the server, and the client designs. A practical implementation is described and shown to effectively function in real-time.
Technical Paper

Analysis of Geo-Location Data to Understand Power and Energy Requirements for Main Battle Tanks

2024-04-09
2024-01-2658
Tanks play a pivotal role in swiftly deploying firepower across dynamic battlefields. The core of tank mobility lies within their powertrains, driven by diesel engines or gas turbines. To better understand the benefits of each power system, this study uses geo-location data from the National Training Center to understand the power and energy requirements from a main battle tank over an 18-day rotation. This paper details the extraction, cleaning, and analysis of the geo-location data to produce a series of representative drive cycles for an NTC rotation. These drive-cycles serve as a basis for evaluating powertrain demands, chiefly focusing on fuel efficiency. Notably, findings reveal that substantial idling periods in tank operations contribute to diesel engines exhibiting notably lower fuel consumption compared to gas turbines. Nonetheless, gas turbines present several merits over diesel engines, notably an enhanced power-to-weight ratio and superior power delivery.
Technical Paper

Transforming AADL Models Into SysML 2.0: Insights and Recommendations

2024-03-05
2024-01-1947
In recent years, the increasing complexity of modern aerospace systems has driven the rapid adoption of robust Model-Based Systems Engineering (MBSE). MBSE is a development methodology centered around computational models, which are instrumental in supporting the design and analysis of intricate systems. In this context, the Architecture Analysis and Design Language (AADL) and Systems Modeling Language (SysML) are two prominent modeling languages for specifying and analyzing the structure and behavior of a cyber-physical system. Both languages have their own specific use cases and tool environments and are typically employed to model different aspects of system design. Although multiple software tools are available for transforming models from one language to another, their effectiveness is limited by fundamental differences in the semantics of each language.
Standard

A Guide to APU Health Management

2023-09-15
CURRENT
AIR5317A
AIR5317 establishes the foundation for developing a successful APU health management capability for any commercial or military operator, flying fixed wing aircraft or rotorcraft. This AIR provides guidance for demonstrating business value through improved dispatch reliability, fewer service interruptions, and lower maintenance costs and for satisfying Extended Operations (ETOPS) availability and compliance requirements.
Journal Article

Framework for Initializing the Conceptual Design of Hypersonic Aircraft

2023-01-18
Abstract To assist in initializing the conceptual design of hypersonic aircraft, we outline a new, systematic framework based on historical aircraft data and primarily composed of design data and regression models. It is a rapid, low-fidelity analysis to provide a starting point for the conceptual design process by (1) assessing the performance capabilities of four types of high-speed aircraft, (2) providing initial estimates for weights and geometry with uncertainty, and (3) exploring how changes in these affect performance within design spaces. Using this framework, an initial set of reasonable aircraft configurations is obtained based on speed, altitude, and payload requirements, which can serve to accelerate the design process and avoid unforeseen problems later in the design cycle. An example is provided to demonstrate the application of the framework to launch the conceptual design of a new hypersonic aircraft with a given set of mission requirements.
Journal Article

Infrared Signature of Fixed and Variable Area C-D Nozzle of Aircraft Engine

2023-01-02
Abstract The use of converging-diverging (C-D) variable area nozzle (VAN) in military aeroengines is now common, as it can give optimal expansion and control over engine back pressure, for a wide range of engine operations. At higher main combustion temperatures (desired for supercruise), an increase in the nozzle expansion ratio is needed for optimum performance. But changes in the nozzle throat and exit areas affect the visibility of engine hot parts as the diverging section of the nozzle is visible for a full range of view angle from the rear aspect. The solid angle subtended by engine hot parts varies with change in visibility, which affects the aircraft infrared (IR) signature from the rear aspect. This study compares the performances of fixed and variable area nozzles (FAN and VAN) in terms of engine thrust and IR signature of the engine exhaust system in the boresight for the same increase in combustion temperature.
Standard

Aircraft Flotation Analysis

2022-12-20
CURRENT
AIR1780B
This document is divided into five parts. The first part deals with flotation analysis features and definitions to acquaint the engineer with elements common to the various methods and the meanings of the terms used. The second part identifies and describes current flotation analysis methods. Due to the close relationship between flotation analysis and runway design, methods for the latter are also included in this document. As runway design criteria are occasionally used for flotation evaluation, including some for runways built to now obsolete criteria, a listing of the majority of these criteria constitutes the third part. The fourth part of this document tabulates the most relevant documents, categorizing them for commercial and civil versus military usage, by military service to be satisfied, and by type of pavement. This document concludes with brief elaborations of some concepts for broadening the analyst’s understanding of the subject.
Standard

Requirements for Conducting Audits of Aviation, Space, and Defense Quality Management Systems

2022-11-29
CURRENT
AS9101G
This standard defines requirements for the preparation and execution of the audit process. In addition, it defines the content and composition for the audit reporting of conformity and process effectiveness to the 9100-series standards, the organization's QMS documentation, and customer and statutory/regulatory requirements. The requirements in this standard are additions or represent changes to the requirements and guidelines in the standards for conformity assessment, auditing, and certification as published by ISO/IEC (i.e., ISO/IEC 17000, ISO/IEC 17021-1). When there is conflict with these standards, the requirements of the 9101 standard shall take precedence.
X