Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Determination of Climatic Boundary Conditions for Vehicular Real Driving Emission Tests

2019-04-02
2019-01-0758
Vehicular Emission testing is gaining importance over the past years in the wake of requirements for real driving emissions with implementation of RDE packages across Europe / USA and various developing countries. Extending the same concept for other countries poses slight challenges in terms of geographical and climatic conditions prevailing in the country, where the climatic conditions are differing from Europe / USA. It is a challenge to accept the same boundary conditions as in Europe, at the same time the challenge is to find a threshold number in a more scientific manner. This study concentrates on determination and recommendation of thresholds for ambient temperature and altitude. The basis for temperature threshold would be to determine the percentage of time the temperature exceeded beyond the threshold over year in the country. The basis for Altitude is considered based on the percentage of total length of roads beyond the threshold altitude limit.
Technical Paper

Failure Analysis and Multi Frequency Swept Sine Testing of Automotive Engine Oil Sump

2019-01-09
2019-26-0354
Automotive business is more focused towards delivering a highly durable and reliable product at an optimum cost. Anything falls short of customer expectation will ruin the manufacturer’s reputation. To exterminate this, all automotive components shall undergo stringent testing protocol during the design validation process. Nevertheless, there are certain factors in the field which cannot be captured during design validation. This paper aims at developing a validation methodology for engine oil sump by simulating field failure. In few of our vehicles, field failure was observed in engine oil sump near the drain plug location. Preliminary analysis was carried out to find the potential causes for failure. Based on the engine test bed results, multi frequency swept sine testing was carried out in laboratory. Field failure was simulated in the lab test and the root causes for failure were found out.
Technical Paper

Optimization of Proving Ground Durability Test Sequence Based on Relative Damage Spectrum

2018-04-03
2018-01-0101
In competitive vehicle market, the product must be designed and validated in shorter time span without compromising the quality. The durability of the vehicle is tested either by on road trials undertaken at the actual customer supplication sites for large time period or in the accelerated rough surfaces called “Proving ground” to validate in shorter time span. Accelerated proving ground durability testing plays a vital role in enabling shorter product development cycles by simulating the road load influences alone from the actual field conditions. It is imperative to simulate the test vehicle at proving ground (PG) testing such that it replicates the same damage that occurs in the field due to road loads. PG validation requires a specific durability test sequence for every segment of commercial vehicles due to different customer usage applications and terrain conditions. This diversity in applications and terrains induce structural damage at different range of frequencies.
Technical Paper

Multi-Axis Simulation Test for Two-Wheeler Carrier Structure of a Commercial Vehicle Using Accelerated Road Load Data

2017-03-28
2017-01-0218
In the present scenario, delivering right product at the right time is very crucial in automotive sector. Today, most of the OEMs have started to produce FBS (Fully Build Solution) such as oil tankers, mining tippers and two-wheeler carriers based on the market requirements. During product development phase, all automotive components undergo stringent validation protocol either in on-road or laboratory which consumes most of the product development time. This project is focused on developing validation methodology for two-wheeler carrier structure (deck) of a commercial vehicle. For this, road load data were acquired in the typical routes of customers at different loading conditions. Roads were classified as either good or bad based on the axle acceleration. To shorten the test duration, actual road load data was compressed using strain based damage editing techniques. The spectrum and transmissibility of acceleration signals at the decks were analyzed to select a deck for validation.
Technical Paper

Air Intake System NVH Performance Development for Commercial Vehicle

2014-04-01
2014-01-0019
Commercial vehicle NVH attributes primarily focus on interior noise for driver's comfort and exterior noise for environmental legislation. Major sources for both the interior and exterior noise are power train unit, exhaust and air intake system. This paper focuses on development of Air Intake System (AIS) for better interior and exterior NVH performance for medium and heavy commercial vehicles. For air intake system, structural radiations from its panels and nozzle noise are significant contributors on overall vehicle NVH. Noise generation mechanism in air intake system occurs due to opening and closing of the valves and inlet air column oscillation by sharp pressure pulse from cylinder. Based on benchmarking, vehicle level targets have been arrived, and then cascaded to system and sub-system level targets. For air intake system, targets for nozzle noise at wide open throttle condition have been set for exterior NVH performance.
Technical Paper

A Simplified Model of Air Suspension for Multi Body Simulation of the Commercial Passenger Vehicle

2013-01-09
2013-26-0157
Multi Body Dynamics (MBD) simulation software is used in product development cycle to reduce the lead time to market. These software have standard parametric templates for modeling metallic suspension systems, which can be quickly modified and used in full vehicle models for ride, handling analysis and the durability load predictions. Generally every Original Equipment Manufacturer (OEM) has unique air suspension arrangement and hence standard template is not available for air suspension modeling in commercial MBD software. Air suspension with self-leveling control mechanism is preferred over metallic suspension in the commercial passenger vehicle like bus for smooth ride comfort. Hence custom made templates for these systems need to be developed for use with MBD software. In this paper, a simplified model of air suspension is presented.
Technical Paper

VDQI - An Approach to Predict Vehicle Design Quality at Early Stages of Product Development

2010-04-12
2010-01-0699
In today's world with a dynamic market and varying customer expectations, it becomes inevitable that we find means of recognizing customer needs with all dimensions and instill them as inherent specifications of a product. Automobiles no way fall away from these intangible demands of the changing world, as personal conveyance (car/motorcycle/scooter) nowadays is more of a basic need. It becomes more of challenge to automotive manufacturers, to offer continuously improving quality products, at competitive prices to be in business. It's very important that as automotive designers we recognize quality in its totality and establish a predictive methodology to inculcate quality into the design at early stages of vehicle development.
X