Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Aortic Mechanics in High-Speed Racing Crashes

2012-04-16
2012-01-0101
Auto racing has been in vogue from the time automobiles were first built. With the dawn of modern cars came higher engine capacities; the speeds involved in these races and crashes increased as well. However, the advent of passive restraint systems such as the helmet, HANS (Head and Neck Support device), multi-point harness system, roll cage, side and frontal crush zones, racing seats, fire retardant suits, and soft-wall technology, have greatly improved the survivability of the drivers in high-speed racing crashes. Three left lateral crashes from Begeman and Melvin (2002), Case #LAS12, #IND14 and #99TX were used as inputs to the Wayne State Human Body Model (WSHBM) in a simulated racing buck. Twelve simulations with delta-v, six-point harness and shoulder pad as design variables were analyzed for the average maximum principal strain (AMPS) in the aorta. The average AMPS for the high-speed crashes were 0.1551±0.0172 while the average maximum pressure was 110.50±4.25 kPa.
Technical Paper

Correlation Between Simulations and Experimental Data for Military Vehicle Applications

1995-04-01
951098
Dynamic data, forces, moments and displacements are widely used parameters in a simulation environment for design and testing. These results may be obtained from field tests, laboratory measurements, and numerical simulations. The correctness of the simulation results depends strongly on the models and numerical solution techniques. This paper presents a preliminary examination of the differences between results obtained from the computer code DADS (Dynamic Analysis and Design System) [1] and the field data for the response of a military tank. The differences are analyzed by standard statistical methods in the frequency domain. The statistical tests show that DADS results differ from the measured field data and that the errors are not white noise. Moreover, the principal frequencies of the differences are identified.
X