Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Training / Education

Failure Mode and Effects Analysis (FMEA)

2024-07-02
This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. This courser will introduce the latest version (2019) of Failure Mode and Effects Analysis (FMEA) Handbook with a focus on DFMEA and PFMEA building. Each column of the FMEA document will also be explained in detail with FMEA examples. The course also includes an introduction to the logic for identifying technical risks and thinking tools for risk mitigation.
Training / Education

Tire Forensics and Markings

2024-06-24
This course introduces basic tire mechanics, including tire construction components based on application type, required sidewall stamping in accordance with DoT/ECE regulations, tread patterns, regulatory and research testing on quality, tire inspections and basic tire failure identification. The course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. This course is practical in nature and supplemented with samples and hands-on activities.
Technical Paper

Fuel Cell Fault Simulation and Detection for On Board Diagnostics using Real-Time Digital Twins

2024-06-12
2024-37-0014
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly validated and calibrated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Software-in-the-loop (SiL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and preciously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails.
Training / Education

Design for Manufacturing & Assembly (DFM/DFA)

2024-05-13
Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes. Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes. In this two-day course, you will not only learn the Boothroyd Dewhurst Method, you will actually apply it to your own product design!
Event

2024-05-01
Event

Sponsor - ADAS to Automated Driving Digital Summit

2024-05-01
The ADAS to Automated Driving Digital Summit will virtually bring together engineering professionals from OEMs, suppliers, technology and corporate and academic research. And now, with no travel required, the digital summit will reach an even broader international audience from North America, Europe, and Asia.
Event

Request Info - Sponsor - ADAS to Automated Driving Digital Summit

2024-05-01
Contact our Sales Team! The ADAS to Automated Driving Digital Summit will virtually bring together engineering professionals from OEMs, suppliers, technology and corporate and academic research. And now, with no travel required, the digital summit will reach an even broader international audience from North America, Europe, and Asia.
Technical Paper

Proposed Test Method for Brake Pad Lining Robustness in Cold Conditions

2024-04-24
2024-01-5049
With globalization, vehicles are sold across the world throughout different markets and their automotive brake systems must function across a range of environmental conditions. Currently, there is no current standardized test that analyzes brake pads’ robustness against severe cold and humid environmental conditions. The purpose of this proposed test method is to validate brake system performance under severe cold conditions, comparing the results with ambient conditions to evaluate varying lining materials’ functional robustness. The goal of this paper is to aid in setting a standardized process and procedure for the testing of automotive brakes’ environmental robustness. Seven candidate friction materials were selected for analysis. The friction materials are kept confidential. Design of experiment (DOE) techniques were used to create a full-factorial test plan that covered all combinations of parameters.
Technical Paper

Parameters Affecting Torsional Stiffness of Vehicle Doors

2024-04-09
2024-01-2226
Side doors are pivotal components of any vehicle, not only for their aesthetic and safety aspects but also due to their direct interaction with customers. Therefore, ensuring good structural performance of side doors is crucial, especially under various loading conditions during vehicle use. Among the vital performance criteria for door design, torsional stiffness plays an important role in ensuring an adequate life cycle of door. This paper focuses on investigating the impact of several door structural parameters on the torsional stiffness of side doors. These parameters include the positioning of the latch, the number of door side hinge mounting points on doors (single or double bolt), and the design of door inner panel with or without Tailor Welded Blank (TWB) construction.
Technical Paper

Validation of Powertrain Systems Based on Usage Space Analysis Considering Virtual Road Load Profiles

2024-04-09
2024-01-2424
Validation of powertrain systems is nowadays performed with specific durability relevant load cycles, which represent the lifetime requirement of individual powertrain components. The definition of such durability relevant load cycles, which are used for vehicle testing should ideally be based on the actual vehicle's usage. Recording driving cycles within a vehicle is one of the most typical ways of collecting vehicle usage and relevant end customer behavior, but the generation of such measured vehicle data can be time consuming. In addition, this method of capturing on-road measurements has limitations in the variation of vehicle loadings (e.g., number of passengers, luggage, trailer usage etc.). Especially for new applications, entering new target markets, these kinds of in-vehicle measurements are not possible in early development stages, as the required vehicle or powertrain configuration is not available in hardware or incapable of measurements.
Technical Paper

A Study of Compression Pad, Its Selection and Optimization Process for the Lithium-Ion Cell Module

2024-04-09
2024-01-2430
The need for eco-friendly vehicle powertrains has increased drastically in recent years. The most critical component of an electric vehicle is the battery pack/cell. The choice of the appropriate cell directly determines the size, performance, range, life, and cost of the vehicle. Lithium-ion batteries with high energy density and higher cycle life play a crucial role in the progress of the electric vehicle. However, the packaging of lithium-ion cells is expected to meet lots of assembly demands to increase their life and improve their functional safety. Due to their low mechanical stability, the lithium-ion cell modules must have external pressure on the cell surface for improved performance. The cells must be stacked in a compressed condition to exert the desired pressure on the cell surface using compression foam/pads. The compression pads can be either packaged between each cell or once in every set of cells based on the cell assembly requirements.
Technical Paper

Vehicle Yaw Dynamics Safety Analysis Methodology based on ISO-26262 Controllability Classification

2024-04-09
2024-01-2766
Complex chassis systems operate in various environments such as low-mu surfaces and highly dynamic maneuvers. The existing metrics for lateral motion hazard by Neukum [13] and Amberkar [17] have been developed and correlated to driver behavior against disturbances on straight line driving on a dry surface, but do not cover low-mu surfaces and dynamic driving scenarios which include both linear and nonlinear region of vehicle operation. As a result, an improved methodology for evaluating vehicle yaw dynamics is needed for safety analysis. Vehicle yaw dynamics safety analysis is a methodical evaluation of the overall vehicle controllability with respect to its yaw motion and change of handling characteristic.
Technical Paper

Dynamic Simulation of Steering Crimp Ring Assembly Process Using CAE and its Correlation with Testing

2024-04-09
2024-01-2733
The process of assembling the bearing and crimp ring to the steering pinion shaft is intricate. The bearing is pressed into its position via the crimp ring, which is tipped inward and fully fitted into a groove on the pinion shaft. Only when the bearing is pressed to a low surface on the pinion shaft, the caulking force for the crimp ring is achieved. The final caulking distance for the crimp ring confirms the proper bearing position. Simulating this transient fitting process using CAE is a challenging topic. Key factors include controlling applied force, defining contact between bearing and pinion surface, and defining contact between crimp ring and bearing surface from full close to half open transition. The overall CAE process is validated through correlation with testing.
Technical Paper

Research on the Oscillation Reduction Control During Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2720
In order to realize the series-parallel switching control of hybrid electric vehicle (HEV) with dual-motor hybrid configuration, a method of unpowered interrupt switching based on the coordinated control of three power sources was proposed by analyzing the series-parallel driving mode of the dual-motor hybrid configuration. The series to parallel switching process is divided into three stages: speed regulation stage, clutch combination and power source switching. The distribution control of speed regulating torque is carried out in the speed regulating stage. The speed adjustment torque is preferentially allocated to the power source of the input shaft (engine and P1) to carry out the lifting torque. Due to the high speed adjustment accuracy and fast response of the P1 motor, the input shaft is preferentially allocated to P1 for speed adjustment, that is, the torque intervention of P1.
Technical Paper

Functional Safety Concept Design of Vehicle Steer-by-Wire System

2024-04-09
2024-01-2792
Steer-By-Wire (SBW) system directly transmits the driver's steering input to the wheels through electrical signals. However, the reliability of electronic equipment is significantly lower than that of mechanical structures, and the risk of failure increases, so it is important to conduct functional safety studies on SBW systems. This paper develops the functional safety of the SBW system according to the requirements of the international standard ISO26262, and first defines the relevant items and application scope of SBW system. Secondly, the Hazard and Operability (HAZOP) method was used to combine scenarios and possible dangerous events to carry out Hazard Analysis and Risk Assessment (HARA), and the Automotive Safety Integrity Level (ASIL) was obtained according to the three evaluation indicators of Exposure, Severity and Controlabillity, and then the corresponding safety objectives were established and Fault Tolerant Time Interval (FTTI) was set.
Technical Paper

Combustion Development and Efficiency Improvement for Hybrid Engines

2024-04-09
2024-01-2093
In the pursuit of carbon emission reduction, hybridization has emerged as a significant trend in powertrain electrification. As a crucial aspect of hybrid powertrain system development, achieving high brake thermal efficiency (BTE) and a wide operating range with high efficiency are essential for hybrid engines to effectively integrate with the hybrid system. When developing dedicated hybrid engines (DHE), several design considerations come into play. First, in order to make efficient use of available resources and enable engine production on the same assembly line as conventional engines, it is crucial to maintain consistency in key design parameters of the cylinder head and block, thus extending the platform-based design approach. Among the key measures to achieve high BTE, cooled exhaust gas recirculation (EGR) has been extensively explored and proven effective in improving efficiency by mitigating knocking and reducing engine cooling heat loss.
Technical Paper

Research on Voltage Control of Dual Motor Hybrid System

2024-04-09
2024-01-2219
The paper introduces two methods for controlling motor voltage. One method requires the implementation of boost hardware, while the other allows for voltage control in battery failure mode without any additional hardware requirements. The boost voltage strategy for the hybrid system is based on managing boost modes, determining target voltages, and implementing PI control. The boost mode control includes different modes such as initial mode, normal mode, shutdown mode, and fault mode. Determining the boost target voltage involves regulating the boost converter with variable voltages depending on the operating states of the motor and generator. The second voltage control method without boost hardware is proposed in order to ensure that the vehicle can still function like a traditional car even under abnormal conditions of high-voltage battery failure in micro-mixing systems.
Technical Paper

Virtual Evaluation of PM Rotor Failure Modes and Magnet Adhesive Debonding with Cohesive Interface Approach

2024-04-09
2024-01-2725
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements gives rise to the need for increased efficiency and power density of the motors in the Electric Drive Unit (EDU). Internal Permanent Magnet (IPM) motor is one of the best suited options in such scenarios because of its primary advantages of higher efficiency and precise control over torque and speed. In the IPM motor, permanent magnets are mounted within the rotor body to produce a resultant rotating magnetic field with the 3-phase AC current supply in the stator. IPM configuration provides structural integrity and high dynamic performance as the magnets are inserted within the rotor body. Adhesive glue is used to install the magnets within the laminated stack of rotor.
Technical Paper

Durability of Elastomeric Bushings Computed from Track-Recorded Multi-Channel Road Load Input

2024-04-09
2024-01-2253
The qualification requirements of automakers derive from track testing in which road load and moment inputs to a part in x, y and z directions are recorded over a set of driving conditions selected to represent typical operation. Because recorded histories are lengthy, often comprising many millions of time steps, past industry practice has been to specify simplified block cycle schedules for purposes of durability testing or analysis. Simplification, however, depends on imprecise human judgement, and risks fidelity of the inferred life and failure mode relative to actual. Fortunately, virtual methods for fatigue life prediction are available that are capable of processing full, real-time, multiaxial road load histories. Two examples of filled natural rubber ride bushings are considered here to demonstrate. Each bushing is subject to a schedule of 11 distinct recorded track events.
X