Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Potential of Serial Hybrid Powertrain Concepts towards decarbonizing the Off-Highway Machinery

2024-06-12
2024-37-0018
Today’s engines used in Agriculture, Mining and Construction are designed for robustness and cost. Here, the Diesel powertrain is the established mainstream solution, offering long operation times without refueling at any desired power rating. In view of the steps towards Carbon Neutrality by 2050 this segment of the Transportation Sector needs to reduce its CO2 emissions. Currently, the EU and US emissions legislations (EU Stage V / EPA Tier4) do not include a CO2 reduction scheme but is expected to change with the next update towards EU Stage VI / EPA Tier5 coming into effect 2030 and after. Larger power and operation range still require the use of renewable, liquid fuels or hydrogen. The cost-up of such fuels could be counterbalanced by more efficient engines in combination with a hybridized powertrain.
Standard

Brake Rotor Thermal Cracking Procedure for Vehicles Below 4 540 kg GVWR

2024-05-17
CURRENT
J2928_202405
This recommended practice is derived from common test sequences used within the industry. This procedure applies to all on-road passenger cars and light trucks up to 4 540 kg of GVWR. This recommended practice does not address other aspects such as performance, NVH, and durability. Test results from this recommended practice should be combined with other measurements and dynamometer tests (or vehicle-level tests), and acceptance criteria to validate a given design or configuration.
Technical Paper

Maximum Pulling Force Calculation of Permanent Magnet Tractor Motors in Electric Vehicle Applications

2024-04-09
2024-01-2217
In electric vehicle applications, the majority of the traction motors can be categorized as Permanent Magnet (PM) motors due to their outstanding performance. As indicated in the name, there are strong permanent magnets used inside the rotor of the motor, which interacts with the stator and causes strong magnetic pulling force during the assembly process. How to estimate this magnetic pulling force can be critical for manufacturing safety and efficiency. In this paper, a full 3D magnetostatic model has been proposed to calculate the baseline force using a dummy non-slotted cylinder stator and a simplified rotor for less meshing elements. Then, the full 360 deg model is simplified to a half-pole model based on motor symmetry to save the simulation time from 2 days to 2 hours. A rotor position sweep was conducted to find the maximum pulling force position. The result shows that the max pulling force happens when the rotor is 1% overlapping with the stator core.
Technical Paper

Wheel Hub Cracks of Heavy-Duty Vehicles due to Drum Brake Shoe-Lining Wear, Friction, and Self-Lock

2024-03-21
2024-01-5037
Wheel hubs with drum brakes of heavy-duty vehicles rarely broke, but some suddenly cracked in the 2000s. The cause of damage was said to be a lack of hub strength. However, the case was suspicious because the hubs were produced according to the design guidelines by the JSAE. In the 1990s, brake shoe-lining materials were changed from asbestos to non-asbestos for people’s health. The brake squeal and abnormal self-lock frequently occurred because of the increased friction coefficient between drum and shoe lining in the case of the leading–trailing type. The mechanical friction coefficient changes with the material and the contact angle, which varies with the wear of shoe lining and the drum temperature. In the previous report, the deformation of the wheel hub under the abnormal self-lock was verified by observing the change of hub attitude in model test equipment.
Technical Paper

Coupled FEM-DEM for Determination of Payload Distribution on Tipper Load Body

2024-01-16
2024-26-0255
Tippers used for transporting blue metal, construction and mining material is designed with different types of load body to suit the material being carried, capacity and its application. These load bodies are constructed with high strength material to withstand forces under various operating conditions. Structural strength verification of load body using FEM is conducted, by modelling forces due to payload as a pressure function on the panels of the load body. The spatial variation of pressure is typically assumed. In discrete element method (DEM) granular payload material such as gravel, wet or dry sand, coal etc., can be modelled by accounting its flow and interaction with structure of load body for prediction of force/pressure distribution. In this paper, coupled FE-DEM is used for determining pressure distribution on loading surfaces of a tipper body structure of a heavy commercial vehicle during loading, unloading and transportation.
Technical Paper

Can Road Tires be Applied in Agriculture?

2024-01-08
2023-36-0086
The mechanization of crops causes problems in soil structure as it causes compaction. Compaction can be severe depending on the type of tire adopted in the field. Producers are concerned with selecting wheelsets that harm the soil less and remembering to save resources when buying agricultural tires. Agricultural tires are more expensive than road tires, and truck tires can be an alternative for producers to save money. The present study evaluated the interaction between wheelset and ground in a fixed tire testing unit, comparing the impact of different tire models on bare ground. The 6 treatments performed consisted of 3 tire models (p1: road radial, composed of double wheelset - 2×275/80r22.5; p2: agricultural radial - 600/50r22.5; and p3: agricultural diagonal - 600/50-22.5) versus two contact surfaces, one rigid and the other with bare agricultural soil. Seven response variables were used to apply Regression analysis and descriptive statistics.
Standard

Wheels - Lateral Impact Test Procedure - Road Vehicles

2023-12-13
CURRENT
J175_202312
The SAE Recommended Practice establishes minimum performance requirements and related uniform laboratory test procedures for evaluating lateral (curb) impact collision resistance of all wheels intended for use on passenger cars and light trucks.
Standard

Operator Enclosure Pressurization System Test Procedure

2023-12-07
CURRENT
J1012_202312
This SAE Recommended Practice establishes a uniform test procedure for evaluating performance of operator enclosure pressurization systems for construction, general-purpose industrial, agricultural, forestry, and specialized mining machinery as categorized in SAE J1116 for off-road, self-propelled work machines.
Book

SAE International's Dictionary of Testing, Verification, and Validation

2023-10-30
Created to elevate expertise in testing, verification, and validation with industry-specific terminology, readers are empowered to navigate the complex world of quality assurance. From foundational concepts to advanced principles, each entry provides clarity and depth, ensuring the reader becomes well-versed in the language of precision. This dictionary is an indispensable companion for both professionals and students seeking to unravel the nuances of testing methodologies, verification techniques, and validation processes. Readers will be equipped with the tools to communicate effectively, make informed decisions, and excel in projects. In addition, references to SAE Standards are included to direct the reader to additional information beyond a practical definition.
Technical Paper

Mechanism for Internal Injector Deposits Formation in Heavy-duty Engines using Drop-in Fuels

2023-09-29
2023-32-0053
Heavy-duty transportation is one of the sectors that contributes to greenhouse gas emissions. One way to reduce CO2 emissions is to use drop-in fuels. However, when drop-in fuels are used, i.e., higher blends of alternative fuels are added to conventional fuels, solubility problems and precipitation in the fuel can occur. As a result, insolubles in the fuel can clog the fuel filters and interfere with the proper functioning of the injectors. This adversely affects engine performance and increases fuel consumption. These problems are expected to increase with the development of more advanced fuel systems to meet upcoming environmental regulations. This work investigates the composition of the deposits formed inside the injectors of the heavy-duty diesel engine and discusses their formation mechanism. Injectors with internal deposits were collected from field trucks throughout Europe. Similar content, location and structure were found for all the deposits in the studied injectors.
Technical Paper

Scaled Hardware in the Loop Simulation of the Electric Motors of a CVT for Agricultural Tractors

2023-08-28
2023-24-0136
Electrification is a very current topic for all the mobile machinery whose primary source of power is an internal combustion engine; among those the light weight passenger vehicles represent the first field of application of this trend and also the state of the art of the technology. Agriculture is a huge fuel consumer sector and for this reason the tractor industry is now working on electrification, proposing different approaches for different power sizes: the “Battery Electric Vehicle” topology is proposed for small and mid-power size tractors, while for the big ones various hybrid architectures couple the internal combustion engine to electric units. In this paper a reference tractor is considered, endowed with an input coupled hydro-mechanical Continuously Variable Transmission and an alternative compound architecture is proposed, which provides the same performances and it is more suitable for electrification.
Technical Paper

Holistic Process-Oriented Approach to Test Bench Control for Mobile Machines

2023-08-28
2023-24-0177
The requirements for modern drivetrains are increasing across all industries. Even mobile working machines such as agricultural and construction machinery are subject to increasingly higher demands in terms of efficiency and CO2 emissions. To verify these requirements and drive further development, it is necessary for testing processes to comprehensively evaluate the machine and its operational processes. For this purpose, the MOBiL testing approach was developed at the Institute of Mobile Machines. This approach incorporates parallel drivetrains, information flow and the environment of the driving and working task. To implement this approach in a complete vehicle testbench, a framework was developed that enables fully individual driving and working tasks of a mobile working machine to be replicated on a test bench. The basis for this framework is the Robot Operating System (ROS), which runs various nodes.
Technical Paper

Development and Testing of End-of-Line (EOL) Tester for Diesel Engine

2023-08-25
2023-01-5058
Decades ago, like the 1990s automobile industry, the off-highway industry was purely recognized as a mechanical entity. In the mechanical system, accuracy and troubleshooting of faults were significant concerns. Additionally, the continuous stringent emission norms by the government call for the adaptation of the aftertreatment and DeNOx led to more complexity and challenges. To meet the government emission regulation and product performance, thorough functionality testing of manufactured units was crucial. For this purpose, EOL/diagnostics testers are developed. Diagnostic protocol CAN establish the connection between ECU and tester due to its robustness and data handling capabilities. This paper aims to develop and test the end-of-line (EOL) tester for off-highway diesel engines. The communication between the tester and ECU will be over UDSonCAN, conforming to standard ISO14229.
Standard

Alarm - Backup - Electric Laboratory Performance Testing

2023-06-27
CURRENT
J994_202306
The scope of this SAE Standard is the definition of the functional, environmental, and life cycle test requirements for electrically operated backup alarm devices primarily intended for use on off-road, self-propelled work machines as defined by SAE J1116 (limited to categories of (1) construction, and (2) general purpose industrial).
Technical Paper

Numerical Analysis of Lightweight Materials and their Combinations to Understand their Behaviour against High Pressure Shock Loading

2023-05-25
2023-28-1311
Materials play a key role in our day to day life and have shaped the industrial revolution to a great extent. Right selection of material for meeting a particular objective is the key to success in today’s world where the cost as well as sustainability of any equipment or a system have assumed greater significance than ever before. In automotive industry, materials have a definitive role as far as the mobility and safety is concerned. Materials that can absorb the required energy or impact can be manufactured through different manufacturing as well as metallurgical processes which involves appropriate heat treatment and bringing correct chemical compositions etc. However, they can also be formed by simpler methods such as combining certain materials together in the form of layered combinations to form light weight composites.
Standard

Air Dryer Installation Procedure

2023-05-24
CURRENT
J2383_202305
This SAE Recommended Practice establishes uniform Installation Parameters for desiccant Air Dryers for vehicles with compressed air systems.
Standard

Fuel Economy Measurement Road Test Procedure

2023-05-10
CURRENT
J1078_202303
This SAE Standard incorporates driving cycles that produce fuel consumption data relating to Urban, Suburban, and Interstate driving patterns and is intended to be used to determine the relative fuel economy among vehicles and driving patterns under warmed-up conditions on test tracks, suitable roads, or chassis dynamometers.1
Technical Paper

An Investigation of Tire Inflation Pressure on Fuel Consumption for Off-Road Vehicles

2023-04-11
2023-01-0751
This paper presents a comprehensive investigation aimed to assess the effect of tire inflation pressure on the fuel consumption of a typical 4×4 off-road vehicle over unprepared soft terrains. For this purpose, a fourteen-degrees-of-freedom (14-DOF) full parametrized vehicle model is employed and numerically simulated in MATLAB/Simulink™ environment. This model is intended to consider all the rotational dynamics and compliances of all-wheel-drivetrain aggregates using SimDriveline™ toolbox including engine, transmission, differentials, shafts and wheels. Numerous simulations are carried out to examine both the tractive efficiency and fuel consumption considering all power losses in transmission, terrains and tire slippage over different operating conditions such as terrain’s mechanical properties, tire weight distribution and drivetrain configurations (open or locked center differential).
Journal Article

A Methodology to Design the Flow Field of PEM Fuel Cells

2023-04-11
2023-01-0495
Proton Exchange Fuel Cells (PEMFCs) are considered one of the most prominent technologies to decarbonize the transportation sector, with emphasis on long-haul/long-range trucks, off-highway, maritime and railway. The flow field of reactants is dictated by the layout of machined channels in the bipolar plates, and several established designs (e.g., parallel channels, single/multi-pass serpentine) coexist both in research and industry. In this context, the flow behavior at cathode embodies multiple complexities, namely an accurate control of the inlet/outlet humidity for optimal membrane hydration, pressure losses, water removal at high current density, and the limitation of laminar regime. However, a robust methodology is missing to compare and quantify such aspects among the candidate designs, resulting in a variety of configurations in use with no justification of the specific choice.
Technical Paper

The Effect of Engine Parameters on In-Cylinder Pressure Reconstruction from Vibration Signals Based on a DNN Model in CNG-Diesel Dual-Fuel Engine

2023-04-11
2023-01-0861
In marine or stationary engines, consistent engine performance must be guaranteed for long-haul operations. A dual-fuel combustion strategy was used to reduce the emissions of particulates and nitrogen oxides in marine engines. However, in this case, the combustion stability was highly affected by environmental factors. To ensure consistent engine performance, the in-cylinder pressure measured by piezoelectric pressure sensors is generally measured to analyze combustion characteristics. However, the vulnerability to thermal drift and breakage of sensors leads to additional maintenance costs. Therefore, an indirect measurement via a reconstruction model of the in-cylinder pressure from engine block vibrations was developed. The in-cylinder pressure variation is directly related to the block vibration; however, numerous noise sources exist (such as, valve impact, piston slap, and air flowage).
X