Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Wear Behavior of Hard Ceramic Coatings by Aluminum Oxide– Aluminum Titanate on Magnesium Alloy

2024-02-23
2023-01-5109
Magnesium and its alloys are promising engineering materials with broad potential applications in the automotive, aerospace, and biomedical fields. These materials are prized for their lightweight properties, impressive specific strength, and biocompatibility. However, their practical use is often hindered by their low wear and corrosion resistance. Despite their excellent mechanical properties, the high strength-to-weight ratio of magnesium alloys necessitates surface protection for many applications. In this particular study, we employed the plasma spraying technique to enhance the low corrosion resistance of the AZ91D magnesium alloy. We conducted a wear analysis on nine coated samples, each with a thickness of 6mm, to assess their tribological performance. To evaluate the surface morphology and microstructure of the dual-phase treated samples, we employed scanning electron microscopy (SEM) and X-ray diffraction (XRD).
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Journal Article

Investigation of Hot Corrosion Behavior on QE22A-Magnesium Silver Alloy through Steaming Method

2022-03-03
Abstract The hot corrosion studies for the die-casted magnesium (Mg) silver (Ag) alloys are carried out through the steam heating route. The Magnesium Silver (QE22A) alloy is fixed under the top lid of the pressure cooker (2 liters) and filled with water and 5% salt (NaCl) solution. The specimens are treated with different time intervals (10, 20, and 30 minutes), with the steam temperature maintained at 100°C around the specimen. The results showed an increase in the corrosion rate with the increase in the steaming time. Further, after the specimens have cooled down to room temperature, similar experiments are repeated for the second and third cycles. Here the formation of the oxide layers over the specimen has reduced the corrosion rate. The structural, surface study was carried out through scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS) to know the corrosion behavior on the specimen.
Journal Article

Effects of Reflux Temperature and Molarity of Acidic Solution on Chemical Functionalization of Helical Carbon Nanotubes

2017-09-19
Abstract The use of nanomaterials and nanostructures have been revolutionizing the advancements of science and technology in various engineering and medical fields. As an example, Carbon Nanotubes (CNTs) have been extensively used for the improvement of mechanical, thermal, electrical, magnetic, and deteriorative properties of traditional composite materials for applications in high-performance structures. The exceptional materials properties of CNTs (i.e., mechanical, magnetic, thermal, and electrical) have introduced them as promising candidates for reinforcement of traditional composites. Most structural configurations of CNTs provide superior material properties; however, their geometrical shapes can deliver different features and characteristics. As one of the unique geometrical configurations, helical CNTs have a great potential for improvement of mechanical, thermal, and electrical properties of polymeric resin composites.
Book

Power Harvesting via Smart Materials

2017-01-01
This monograph covers the fundamentals, fabrication, testing, and modeling of ambient energy harvesters based on three main streams of energy-harvesting mechanisms: piezoelectrics, ferroelectrics, and pyroelectrics. It addresses their commercial and biomedical applications, as well as the latest research results. Graduate students, scientists, engineers, researchers, and those new to the field will find this book a handy and crucial reference because it provides a comprehensive perspective on the basic concepts and recent developments in this rapidly expanding field.
X