Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Elastomeric Swaging Finite Element Analysis Methodology to Evaluate Structural Integrity of Internal Swaged Joints

2024-06-01
2024-26-0428
In applications demanding high performance under extreme conditions of pressure and temperature, a range of Mechanically Attached Fittings (MAFs) is offered by various Multinational Corporations (MNCs). These engineered fittings have been innovatively designed to meet the rigorous requirements of the aerospace industry, offering a cost-effective and lightweight alternative to traditional methods such as brazing, welding, or other mechanically attached tube joints. One prominent method employed for attaching these fittings to tubing is through Internal Swaging, a mechanical technique. This process involves the outward formation of rigid tubing into grooves within the fitting. One of the methods with which this intricate operation is achieved is by using a drawbolt - expander assembly within an elastomeric swaging machine.
Standard

Identification and Packaging Elastomeric Products

2024-03-04
CURRENT
AMS2810J
This specification provides requirements for the identification and packaging of sheet, strip, extrusions, and molded parts made of natural rubber, synthetic rubber, reclaimed rubber, and combinations of the above with other materials such as asbestos, cork, and fabrics. AMS2817 covers preferred requirements for identification and packaging of preformed packings.
Technical Paper

Experimental Investigation on the Mechanical Properties of Date Seed and Neem Gum Powder Added Natural Composites

2024-02-23
2023-01-5150
The experimental investigation aims to improve natural composite materials aligned with feasible development principles. These composites can be exploited across several industries, including the automobile and biomedical sectors. This research employs date seed powder and neem gum powder as reinforcing agents, along with polyester resin as the base material. The fabrication route comprises compression moulding, causing the production of the natural composite material. This study focuses extensively on mechanical characteristics such as tensile strength, flexural strength, hardness, and impact resistance to undergo comprehensive testing. Furthermore, the chemical properties of the composites are examined using the FTIR test to gain understanding by integrating different proportions of date seed powder (5%, 10%, 15%, and 20%) and neem gum powder (0%, 3%, 6%, and 9%) in the matrix phase.
Technical Paper

Research on the Forming Process of Bimetal Composite Pipe by Hydroforming

2024-01-15
2024-01-5001
Bimetal composite pipe has higher strength and is more corrosion and high temperature resistant compared to single metal pipe, making it a new type of pipe that is being gradually applied to important industrial fields such as aviation and aerospace manufacturing. To study the hydraulic forming mechanism of bimetal composite pipes, the forming process is divided into three stages: liner pipe elastic–plastic deformation, base pipe loading, and unloading. The stress and strain relation between the liner and base pipe during the gradual increase in hydraulic pressure is analyzed, and the range of selected internal pressure required for composite pipe formation and the relation between residual contact pressure and internal pressure for the liner–base pipe interface are obtained.
Standard

Elastomer: Fluorosilicone Rubber (FVMQ), Fuel and Oil Resistant, High Strength, 45 – 55 Shore A Hardness, For Products in Fuel Systems / Lubricating Oils

2023-10-16
CURRENT
AMS3329D
This specification covers a high strength fluorosilicone (FVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, molded O-ring cord, and molded in place gaskets for aeronautical and aerospace applications.
X