Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Exploring the Mechanical Properties of Modified Pistachio Shell Particulate Composites through Experimental Investigation

2024-04-29
2024-01-5052
The present study focuses on the impacts of pistachio shell particles (2–10 wt.%) on the mechanical and microstructures properties of Al–Cu–Mg/pistachio shell particulate composites. To inspect the impact of the pistachio shell powder content with Al–Cu–Mg alloys, the experimentation was carried out with different alloy samples with constant copper (Cu) and magnesium (Mg) content. Parameters such as hardness, tensile strength with yield strength and % elongation, impact energy, and microstructure were analyzed. The outcomes demonstrated that the uniform dissemination of the pistachio shell particles with the microstructure of Al–Cu–Mg/pistachio shell composite particulates is the central point liable for the enhancement of the mechanical properties. Incorporating pistachio shell particles, up to 10 wt.%, is a cost-effective reinforcement in the production of metal matrix composites for various manufacturing applications.
Journal Article

Se (IV)-Doped Monodisperse Spherical TiO2 Nanoparticles for Adhesively Bonded Joint Reinforcing: Synthesis and Characterization

2024-04-27
Abstract This study focused on the synthesis and characterization of monodisperse spherical TiO2 nanoparticles doped on the surface with Se (IV) in order to increase the mechanical properties of the bonded joint reinforcing. Work will begin with the synthesis of monodisperse quasi-spherical TiO2 nanoparticles with a modal diameter of less than 20 nm, using the sol-gel technique. Se (IV) selenium surface doping changed the specimen’s chemistry and physics. Different initial concentrations of the doping element will be tested. Next, a physicochemical characterization of the different solid systems will be carried out in order to determine the effect of the doping element on the properties of titanium dioxide. Their morphology and size will be studied through transmission electron microscope observations; volume chemical composition by X-ray diffraction analysis, EDX (energy-dispersive X-ray), and XRF (X-ray fluorescence).
Journal Article

Optimization and Performance Evaluation of Additives-Enhanced Fluid in Machining Using Split-Plot Design

2024-04-15
Abstract In recent years, the use of cutting fluids has become crucial in hard metal machining. Traditional non-biodegradable cutting fluids have long dominated various industries for machining. This research presents an innovative approach by suggesting a sustainable alternative: a cutting fluid made from a blend of glycerol (GOL) and distilled water (DW). We conducted a thorough investigation, creating 11 different GOL and DW mixtures in 10% weight increments. These mixtures were rigorously tested through 176 experiments with varying loads and rotational speeds. Using Design-Expert software (DES), we identified the optimal composition to be 70% GOL and 30% DW, with the lowest coefficient of friction (CFN). Building on this promising fluid, we explored further improvements by adding three nanoscale additives: Nano-graphite (GHT), zinc oxide (ZnO), and reduced graphene oxide (RGRO) at different weight percentages (0.06%, 0.08%, 0.1%, and 0.3%).
Technical Paper

A Study on Correlation between Micro Structure of Porous Sound Absorbing Materials and Sound Absorption Performance Using CT

2024-04-09
2024-01-2883
One of the five major performances of vehicles, NVH(Noise, Vibration, Harshness), has recently emerged in electric vehicles, again. And, front loading NVH simulation is essential to respond nimbly to automotive industry these days. However, the two components of the simulation, mathematical sound absorption modeling equation, and the acoustic parameters, the input factor, is requiring improvement because of lack of robustness. In this study, we tried to strengthen, standardize, and refine the connectivity between micro (fine structure) and macro (acoustic parameter-related physical properties) characteristics, and improve the consistency with actual NVH performance. As a porous polymer material, polyurethane foam, which is widely used for the interior and exterior of automobiles, is treated as a target material.
Technical Paper

Influence of Microstructure on CFD Simulation of Water Removal in a PEM FC Channel

2024-04-09
2024-01-2181
Water removal from Proton Exchange Membrane (PEM) Fuel Cell (FC) mainly involves two phenomena: some of the emerging droplets will roll on the Gas Diffusion Layer (GDL), others may impact channel walls and start sliding along the airflow direction. This different behaviour is linked to the hydrophobic/hydrophilic nature of the surface the water is moving on. In this paper, the walls of the channel of a FC were characterized by applying optical techniques. The deposition of droplets on the channel wall led to an evaluation of the proper range for Contact Angle Hysteresis (CAH = 55° - 45°), and due to the high wettability of the surface, droplets dimension was defined with a dimensionless parameter B/H. Under high crossflow condition (15 m/s) a sliding behaviour was observed. The channel features determined through image processing were used as boundary conditions for a 2D CFD two phase simulation employing the Volume of Fluid (VOF) model to keep track of the fluids interface.
Technical Paper

Development of Mo-Free Ultra-High Strength 1.6-GPa Bolt with Delayed Fracture Resistance for Multi-Link Type Engine

2024-04-09
2024-01-2070
Mo-free 1.6-GPa bolt was developed for a Variable Compression Turbo (VC-Turbo) engine, which is environment friendly and improves fuel efficiency and output. Mo contributes to the improvement of delayed fracture resistance; therefore, the main objective is to achieve both high strength and delayed fracture resistance. Therefore, Si is added to the developed steel to achieve high strength and delayed fracture resistance. The delayed fracture tests were performed employing the Hc/He method. Hc is the limit of the diffusible hydrogen content without causing a delayed fracture under tightening, and He is the diffusible hydrogen content entering under a hydrogen-charging condition equivalent to the actual environment. The delayed fracture resistance is compared between the developed steel and the SCM440 utilized for 1.2-GPa class bolt as a representative of the current high-strength bolts.
Technical Paper

Combustion Characteristics of Aluminum Oxide Nanoparticles-Diesel Blends in a Constant Volume Chamber

2024-04-09
2024-01-2125
This study investigates the effects on combustion characteristics of aluminum oxide (Al2O3) nanoparticles as additives for diesel in a constant volume chamber. Depending on the amount of aluminum oxide nanoparticles added, the test fuels are labeled as DA25, DA50, and DA100, which represent 25, 50, and 100 mg of aluminum oxide nanoparticles into 1 L of pure diesel, respectively. The ambient temperature for this experiment ranged from 800 to 1200 K to cover conventional and low-temperature combustion regimes. The oxygen concentration ranged from 21% to 13% to simulate different levels of exhaust gas recirculation (EGR). Based on in-cylinder pressure traces and results of apparent heat release rates, there was an improvement in combustion characteristics with the addition of aluminum oxide nanoparticles.
Technical Paper

A Study on the Correlation between Heat-Treatment Microstructure and Mechanical Properties of Additive Manufactured Al-Si-Mg Alloy with Bulk and Lattice Structure for Weight Reduction of Vehicle Parts and Application of Shock Absorbing Regions

2024-04-09
2024-01-2574
This study delves into the microstructural and mechanical characteristics of AlSi10Mg alloy produced through the Laser Powder Bed Fusion (L-PBF) method. The investigation identified optimal process parameters for AlSi10Mg alloy based on Volume Energy Density (VED). Manufacturing conditions in the L-PBF process involve factors like laser power, scan speed, hatching distance, and layer thickness. Generally, high laser power may lead to spattering, while low laser power can result in lack-of-fusion areas. Similarly, high scan speeds may cause lack-of-fusion, and low scan speeds can induce spattering. Ensuring the quality of specimens and parts necessitates optimizing these process parameters. To address the low elongation properties in the as-built condition, heat treatment was employed. The initial microstructure of AlSi10Mg alloy in its as-built state comprises a cell structure with α-Al cell walls and eutectic Si.
Technical Paper

Anisotropic Material Behavior of 3D Printed Fiber Composites

2024-04-09
2024-01-2573
Literature has shown that 3D printed composites may have highly anisotropic mechanical properties due to variation in microstructure as a result of filament deposition process. Laminate composite theory, which is already used for composite products, has been proposed as an effective method for quantifying these mechanical characteristics. Continuous fiber composites traditionally have the best mechanical properties but can difficult or costly to manufacture, especially when attempting to use additive manufacturing methods. Traditionally, continuous fiber composites used specialized equipment such as vacuum enclaves or labor heavy hand layering techniques. An attractive alternative to these costly techniques is modifying discontinuous fiber additive manufacturing methods into utilizing continuous fibers. Currently there exist commercial systems that utilize finite-deposition (FD) techniques that insert a continuous fiber braid into certain layers of the composite product.
Standard

Estimated Mechanical Properties and Machinability of Steel Bars

2024-03-04
CURRENT
J1397_202403
This SAE Information Report is intended to provide a guide to mechanical and machinability characteristics of some SAE steel grades. The ratings and properties shown are provided as general information and not as requirements for specifications unless each instance is approved by the source of supply. The data are based on resources which may no longer be totally accurate. However, this report is retained as a service in lieu of current data.
Technical Paper

An Investigation into the Heat Deformation of a Powder-Metallurgical Iron- Aluminium-Chromium Alloy

2024-02-23
2023-01-5128
Powder metallurgy of 3065IS temperature and strain rate were only two of the variables used to investigate the higher permeability of an iron alloy. A strain rate vs. stress plot revealed a critical value. This demonstrated that the functioning of the alloy was comparable to that of other materials in its class. We used a transmission electron microscope to examine the microstructure of routinely twisted materials to determine particle characteristics and precipitate distribution. This allowed us to gain a better understanding of the internal workings of materials. Using constitutive equations, we investigated the link between temperature and stress. This study's findings were incorporated into equations describing the material's high thermal behaviour, and a modified version of the cosec equation was used to analyse this reliance. Effective stress was defined as the distinction between actual stress and a present limit.
Technical Paper

Wear Behavior of Hard Ceramic Coatings by Aluminum Oxide– Aluminum Titanate on Magnesium Alloy

2024-02-23
2023-01-5109
Magnesium and its alloys are promising engineering materials with broad potential applications in the automotive, aerospace, and biomedical fields. These materials are prized for their lightweight properties, impressive specific strength, and biocompatibility. However, their practical use is often hindered by their low wear and corrosion resistance. Despite their excellent mechanical properties, the high strength-to-weight ratio of magnesium alloys necessitates surface protection for many applications. In this particular study, we employed the plasma spraying technique to enhance the low corrosion resistance of the AZ91D magnesium alloy. We conducted a wear analysis on nine coated samples, each with a thickness of 6mm, to assess their tribological performance. To evaluate the surface morphology and microstructure of the dual-phase treated samples, we employed scanning electron microscopy (SEM) and X-ray diffraction (XRD).
Technical Paper

Heat Conduction through Natural Fiber/Carbon Nanotubes Filler Matrix Polymer Composite Slabs: An Experimental and Analytical Comparisons

2024-02-23
2023-01-5107
The latest developments in composite materials are anticipated by green engineering. Materials must be eco-friendly, recyclable, biodegradable, and easy to decompose. Researchers are interested in utilizing natural fibres, fillers, and synthetic active ingredients. Natural fiber-polymer composites can specify certain mechanical properties but are hydrophilic and weak, so they rarely meet the needed thermal properties. Composite material selection depends on the application and the superior properties of the fibre/filler: banana fibre (BF), ice husk (RH) and multi-walled carbon nanotubes (MWCNT). In this research article, a brief discussion of the heat transfer mechanism of composites and the development of energy conduction equation are performed for hybrid natural polymer composite. The maximum thermal conductivity observed for 10BF/10RH/1MWCNT wt.% composite is 0.2694 W/mK.
Technical Paper

Enhancing the Mechanical and Thermal Properties of Kevlar Composites for Advanced Vehicle Components using Montmorillonite Nano Clay Integration

2024-02-23
2023-01-5113
The automobile industry is searching for materials that offer superior mechanical and thermal properties. With this objective, the current study delves into the potential advantages of integrating nanofillers into hybrid composite structures tailored for vehicle applications. The investigation employed Kevlar fiber, a renowned material in vehicular composites, and reinforced it with an epoxy matrix, crafting a nanocomposite surface. This method was paralleled by incorporating nanoparticle-infused resin into the Kevlar fiber. The concentration of nano clay within the epoxy resin was adjusted across different weight percentages: 2.5%, 5%, 7.5%, and 10%. Both composite and nanomaterial panels were meticulously crafted using the hand layup method post-curing. The outcome was enlightening: the tensile strength of the clay/epoxy/Kevlar composite surged by 10.54% at the 7.5 wt% clay concentration. This enhancement, however, saw a decline in higher clay incorporations.
Technical Paper

An Investigation on Effect of Inorganic Reinforcement Materials and Taguchi-Based Optimization on Manufacturing of Hybrid Composites (AI7068)

2024-02-23
2023-01-5141
A crucial characteristic of composites, which are manufactured from elements of metal, is their mechanical and durability properties. A variety of reinforcing agents and metal nanoparticles are used to create aluminum-based hybrid metal-material composites. These composites are an advantageous alternative for sectors with limited resources because of their robustness, wear resistance, and thermal management capabilities. Manufacturing sectors employ Taguchi optimisation and Grey relational analysis to enhance the mechanical and durability properties of aluminum-based hybrid metal composites. To comprehend the interrelationships between reinforcing materials such as Al2O3 and SiC at constant fly ash concentration, five responses such as wear loss, tensile strength, elongation rate, impact strength, and hardness were considered and assessed. The Grey Relational Analysis (GRA) method is used to optimise these responses and transform them into Grey Relational Grade (GRG).
Technical Paper

Structure and Behaviour Characteristics of Aluminum –Nickel- Zinc Alloy by Spray Forming

2024-02-23
2023-01-5120
The microstructure of the alloy and the manner in which it responds to heat treatment has been investigated. The alloy was aged at 550OC when it was initially spray-formed, or when its thickness was decreased by 38%. Before further aging of some specimens, a four-hour solution treatment at 1015OC was performed. The subsequent phase was a cold deformation that was barely 60% of the sample's initial thickness. The alloys' electrical conductivity and hardness may be evaluated based on how long they had been created. Following solution treatment and cold rolling, the alloy's peak hardness was around 380 kgf/mm2. In samples aged immediately under spray-produced conditions, the maximum peak hardness of 255 kgf/mm2 was attained. Conductivities in freshly cold-rolled samples could reach up to 75% of the standard for annealed copper internationally. It looks at the microstructural features of this alloy in this context, paying close attention to how various processing conditions affect them.
Technical Paper

Effectiveness of Titanium Dioxide Nano Fillers on Sisal fiber for Enhanced Mechanical Properties and Occupant Protection in Hybrid Nanocomposites

2024-02-23
2023-01-5114
Vehicle occupant protection remains a critical concern in the field of crashworthiness technology. When integrated into polymer nanocomposites, natural fibres like sisal offer a high strength-to-weight ratio that can contribute to effective energy absorption during collisions. However, these fibers present challenges, such as poor hydrophilicity and moisture retention. This study employs compression molding techniques to create hybrid composites of sisal fibers, epoxy, and titanium oxide nano fillers. We particularly investigate how fiber orientation and the concentration of nano fillers can optimize mechanical and thermal properties, thereby enhancing occupant protection features. Our findings demonstrate that the orientation of sisal fibers and the incorporation of titanium oxide nano fillers in the epoxy matrix significantly influence the composite's mechanical and thermal characteristics.
Technical Paper

An Examination of the Friction and Wear Characteristics of Carburized, Boronized, and Austenitic 1080 and 1566 Steel

2024-02-23
2023-01-5102
Carburizing, austenitic, and boronizing were used to enhance the friction and wear properties of AISI 1080 and 1566 steel surfaces. They were subjected to austenitic, solid boronizing, liquid and gaseous carburizing processes. An examination done and observed the microstructure, X-ray diffraction patterns, and hardness distributions of the material. For the wear testing, pin-on-disc specimen topologies were employed, and removal efficiencies were estimated based on the sliding distance and the required force applied. In addition, the abrasiveness of the sample surfaces was assessed. The heat treatment capacity of AISI 1020 steel was investigated and compared to the heat treatment capabilities of other steel samples to establish how much heat can be applied to the steel.
Technical Paper

Characteristics Enhancement of Mechanical Properties of Aluminum Metal Matrix Composites Reinforced with Silicon Carbide Using Stir Casting Technique

2024-02-23
2023-01-5164
Metal Matrix Composites (MMC) made of the aluminium as base metal is now being used in diversed applications due to its extended properties. The physical, chemical, mechanical and structural properties make it as irresistible in the engineering applications. Metal Matrix Composites (MMCs) based on aluminium have increased in popular in various applications including aerospace, car, space, transportation, and undersea applications.. In this study, Al LM25/SiCp MMC was fabricated using a low-cost stir casting technique, and the weight percentage of SiCp was varied from 4% to 8% to prepare the MMC plates. The aim of the research was to investigate the mechanical properties of the specimen, including hardness, tensile, and impact tests. The microstructure of the specimens is investigated which shows the bonding between the particles which is fabricated by Stir casting method. The sample 2 has better mechanical properties when it is compared with other specimens.
X