Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Humidity Condensate Sampling System for Shuttle, Mir and International Space Station

1998-07-13
981764
Archival sampling of potable water and condensate for ground laboratory analysis has been an important part of the Shuttle-Mir program because of coolant leaks and other events on Mir that have affected water quality. We report here the development of and preliminary results from a novel device for single phase humidity condensate collection at system pressures. The sampler consists of a commercial-off-the-shelf Teflon® bladder and a custom reinforced Nomex® restraint that is sized properly to absorb the stress of applied pressures. A plastic Luer-Lock disconnect, with poppet actuated by a mating Luer-Lock fitting, prevents the contents from being spilled during transport. In principle, a sampler of any volume can be designed. The empty mass of the reusable one-liter sampler is only 63 grams. Several designs were pressure tested and found to withstand more than 3 atmospheres well in excess of typical spacecraft water or wastewater system pressures.
Technical Paper

Solid Phase Extraction of Polar Compounds in Water

1997-07-01
972465
The Water and Food Analytical Laboratory, at the Johnson Space Center is developing an alternative to EPA Method 625 for analyzing semivolatile organic compounds in water. The current EPA method uses liquid-liquid extraction. The alternative method being developed differs in the sample preparation phase by replacing gravity-dependent liquid-liquid extraction with solid phase extraction (SPE). The ultimate goal is to incorporate the optimum SPE conditions into an automated sample preparation process. The method shows promise with regard to anticipated polar compounds. Fourteen SPE resins and nine elution solvents were compared. For typical analytes encountered by our laboratory, a styrene-divinylbenzene SPE resin and an elution solvent mixture of methylene chloride and ethyl ether were found to give the highest extraction recoveries. A study is in progress to remove water from the extracts before GC/MS analysis.
Technical Paper

Evaluation of Methods for Remediating Biofilms in Spacecraft Potable Water Systems

1994-06-01
941388
Controlling microbial growth and biofilm formation in spacecraft water-distribution systems is necessary to protect the health of the crew. Methods to decontaminate the water system in flight may be needed to support long-term missions. We evaluated the ability of iodine and ozone to kill attached bacteria and remove biofilms formed on stainless steel coupons. The biofilms were developed by placing the coupons in a manifold attached to the effluent line of a simulated spacecraft water-distribution system. After biofilms were established, the coupons were removed and placed in a treatment manifold in a separate water treatment system where they were exposed to the chemical treatments for various periods. Disinfection efficiency over time was measured by counting the bacteria that could be recovered from the coupons using a sonication and plate count technique. Scanning electron microscopy was also used to determine whether the treatments actually removed the biofilm.
Technical Paper

Advanced Development of the Regenerative Microbial Check Valve

1993-07-01
932175
The Microbial Check Valve (MCV) is a reloadable flow-through canister containing iodinated ion exchange resin, which is used aboard the Shuttle Orbiter as a disinfectant to maintain water potability. The MCV exhibits a significant contact kill and imparts a biocidal residual I2 concentration to the effluent. MCVs in current use have nominal 30 day lives. MCVs baselined for Space Station Freedom will have 90 day lives, and will require replacement 120 times over 30 years. Means to extend MCV life are desirable to minimize resupply penalties. New technology has been developed for fully autonomous in situ regeneration of an expended MCV canister. The Regenerative Microbial Check Valve (RMCV) consists of an MCV, a packed bed of crystalline I2, a flow diverter valve, an in-line iodine monitor and a microcontroller. During regeneration, flow is directed first through the packed I2 bed and then into the MCV where the resin is replenished.
Technical Paper

Regenerable Microbial Check Valve: Life Cycle Tests Results

1992-07-01
921316
The Microbial Check Valve (MCV) is a canister containing an iodinated ion exchange resin and is used on the Shuttle Orbiter to provide microbial control of potable water. The MCV provides a significant contact kill, and imparts a biocidal iodine residual to the water. The Orbiter MCV has a design life of 30 days. For longer duration applications, such as Space Station Freedom, an extended life is desirable to avoid resupply penalties. A method of in situ MCV regeneration with elemental iodine is being developed. During regeneration water en route to the MCV first passes through a crystalline iodine bed where a concentration between 200 - 300 mg/L I2 is attained. When introduced into the MCV, this high concentration causes an equilibrium shift towards iodine loading, effecting regeneration of the resin. After regeneration normal flow is re-established. Life cycle regeneration testing is currently in progress.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Three Year Results

1992-07-01
921310
Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. Scanning electron microscopy indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Two-Year Results

1991-07-01
911403
The ability of iodine to maintain microbial water quality in a simulated spacecraft water system is being studied. An iodine level of about 2.0 mg/L is maintained by passing ultrapure influent water through an iodinated ion exchange resin. Six liters are withdrawn daily and the chemical and microbial quality of the water is monitored regularly. Stainless steel coupons used to monitor biofilm formation are being analyzed by culture methods, epifluorescence microscopy, and scanning electron microscopy. Results from the first two years of operation show a single episode of high bacterial colony counts in the iodinated system. This growth was apparently controlled by replacing the iodinated ion exchange resin. Scanning electron microscopy indicates that the iodine has limited but not completely eliminated the formation of biofilm during the first two years of operation.
Technical Paper

Recent Experiences with Iodine Water Disinfection in Shuttle

1990-07-01
901356
Microbial proliferation in the STS potable water system is prevented by maintaining a 2-5 ppm iodine residual. The iodine is added to fuel cell water by an iodinated ion exchange resin in the Microbial Check Valve (MCV). Crew comments indicated excessive iodine in the potable water. To better define the problem, a method of in-flight iodine analysis was developed. Inflight analysis during STS-30 and STS-28 indicated iodine residuals were generally in the 9-13 ppm range. It was determined that the high iodine residual was caused by MCV influent temperatures in excess of 120 °F. This is well above the MCV operating range of 65-90 °F. The solution to this problem was to develop a resin suitable for the higher temperatures. Since 8 months were required to formulate a MCV resin suitable for the higher temperatures, a temporary solution was necessary. Two additional MCV's were installed on the chilled and ambient water lines leading into the galley to remove the excess iodine.
Technical Paper

Test Results of a Shower Water Recovery System

1987-07-01
871512
A shower test was conducted recently at NASA-JSC in which waste water was reclaimed and reused. Test subjects showered in a prototype whole body shower following a protocol similar to that anticipated for Space Station. The waste water was purified using reverse osmosis followed by filtration through activated carbon and ion exchange resin beds. The reclaimed waste water was maintained free of microorganisms by using both heat and iodine. This paper discusses the test results, including the limited effectiveness of using iodine as a disinfectant and the evaluation of a Space Station candidate soap for showering. In addition, results are presented on chemical and microbial impurity content of water samples obtained from various locations in the water recovery process.
Technical Paper

Treatment Bed Microbiological Control

1987-07-01
871492
The effects of microbial fouling on treatment bed (TB) performance are being studied. Fouling of activated carbon (AC) and ion exchange resins (IEX) by live and devitalized bacteria can cause decreased capacity for selected sorbates with AC and IEX TB. More data are needed on organic species removal in the trace region of solute sorption isotherms. TB colonization was prevented by nonclassical chemical disinfectant compositions (quaternary ammonium resins) applied in suitable configurations. Recently, the protection of carbon beds via direct disinfectant impregnation has shown promise. Effects (of impregnation) upon bed sorption/removal characteristics are to be studied with representative contaminants. The potential need to remove solutes added or produced during water disinfection and/or TB microbiological control must be investigated.
X