Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Sustainable Fuels for Long-Haul Truck Engines: a 1D-CFD Analysis

2024-06-12
2024-37-0027
Heavy duty truck engines are quite difficult to electrify, due to the large amount of energy required on-board, in order to achieve a range comparable to that of diesels. This paper considers a commercial 6-cylinder engine with a displacement of 12.8 L, developed in two different versions. As a standard diesel, the engine is able to deliver more than 420 kW at 1800 rpm, whereas in the CNG configuration the maximum power output is 330 kW at 1800 rpm. Maintaining the same combustion chamber design of the last version, a theoretical study is carried out in order to run the engine on Hydrogen, compressed at 700 bar. The study is based on GT-Power simulations, adopting a predictive combustion model, calibrated with experimental results. The study shows that the implementation of a combustion system running on lean mixtures of Hydrogen, permits to cancel the emissions of CO2, while maintaining the same power output of the CNG engine.
Technical Paper

High Pressure Hydrogen Injector Sizing Using 1D/3D CFD Modeling for a Compression Ignition Single Cylinder Research Engine

2024-04-09
2024-01-2615
With the aim of decarbonizing the vehicles fleet, the use of hydrogen is promising solution. Hydrogen is an energy carrier, carbon-free, with high calorific value and with no CO2 and HC emissions burning in ICE. Hydrogen use in spark ignition engines has already been extensively investigated and optimized. On the other hand, its use in compression ignition engines has been little developed and, therefore, there is a lack of information regarding the combustion in ultra-lean conditions, typical of diesel engines. Several applications employ dual fuel combustion for the easy management of the PFI injection system to be applied in addition to the DI Common Rail system. However, this mode suffers from several problems regarding the management of the maximum flow rate of hydrogen into the intake. In particular, to avoid throwing hydrogen into the exhaust, injection must be started after the valve crossing.
Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
Technical Paper

Proposal and Validation of 3D-CFD Framework for Ultra-Lean Hydrogen Combustion in ICEs

2024-04-09
2024-01-2685
In recent months, the increasing debate within the European Union to review the ban on internal combustion engines has led to the pursuit of environmentally neutral solutions for ICEs, as an attempt to promote greater economic and social sustainability. Interest in internal combustion engines remains strong to uphold the principle of technological neutrality. In this perspective, the present paper proposes a numerical methodology for 3D-CFD in-cylinder simulations of hydrogen-fueled internal combustion engines. The combustion modelling relies on G-equation formulation, along with Damköhler and Verhelst turbulent and laminar flame speeds, respectively. Numerical simulations are validated with in-cylinder pressure traces and images of chemiluminescent hydrogen flames captured through the piston of a single-cylinder optical spark-ignition engine.
Technical Paper

Thermodynamic and Tribological Analysis of an Innovative Mechanism for Reciprocating Machines

2023-08-28
2023-24-0016
Research and development studies regarding the internal combustion engines are, now more than ever, crucial in order to prevent a premature disposal for this application. An innovative technology is analyzed in this paper. The traditional slider-crank mechanism is replaced by a system of two ring-like elements crafted in such a way to transform the rotating motion of one element in the reciprocating motion of the other. This leads both to a less complex engine architecture and to the possibility to obtain a wide range of piston laws by changing the profile of the two cams. The relative motion of the cams is the peculiar feature of this engine and, due to this, alongside with the thermodynamic analysis, also the tribological aspects are investigated. 3D-CFD simulations are performed for several piston laws at different engine speeds to evaluate the cylinder pressure trace to be used as input data for the development of the tribological model.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
Technical Paper

Investigation of Liquid Lignin-Methanol Blends under Realistic Two-Stroke Marine Engines Conditions

2023-08-28
2023-24-0085
With a view to reducing the environmental impact of fossil fuels, advanced lignin-based biofuels could provide a valuable contribute, since lignin is the most abundant biopolymer on earth after cellulose. However, its thermophysical properties would hamper its use as a pure fuel. In this work we investigated the combustion behavior of sprays of a liquid lignin-methanol blend and evaluated its potential as a low-carbon marine fuel for large two-stroke engines. To this end, an experimental campaign was conducted in an optically accessible combustion chamber whose main dimensions correspond to those of a single cylinder for large two-stroke engines. The chamber is provided with optical accesses for optical diagnostics of the combustion process. The combustion of the mixture was ignited using a diesel pilot jet as the ignition source. Two marine injectors are mounted in the chamber, namely “main” and “pilot” injectors.
Technical Paper

CFD Simulations and Potential of Nanofluids for PEM Fuel Cells Cooling

2023-08-28
2023-24-0144
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are undergoing a rapid development, due to the ever-growing interest towards their use to decarbonize power generation applications. In the transportation sector, a key technological challenge is their thermal management, i.e. the ability to preserve the membrane at the optimal thermal state to maximize the generated power. This corresponds to a narrow temperature range of 75-80°C, possibly uniformly distributed over the entire active surface. The achievement of such a requirement is complicated by the generation of thermal power, the limited exchange area for radiators, and the poor heat transfer performance of conventional coolants (e.g., ethylene glycol). The interconnection of thermal/fluid/electrochemical processes in PEMFCs renders heat rejection as a potential performance limiter, suggesting its maximization for power density increase.
Technical Paper

Exploring the Potential of Hydrogen Opposed Piston Engines for Single-Cylinder Electric Generators: A Computational Study

2023-08-28
2023-24-0128
One of the main challenges related to the use of Hydrogen in Internal Combustion Engines is the trade-off between NOx emissions and brake power output: on the one hand, a lean premixed charge (Lambda ≈2.5) is generally able to provide a regular and efficient combustion, yielding near-zero NOx emissions; on the other hand, the power density tends to be very poor, due to the huge amount of air required by the thermodynamic process. As a further penalization, the injection of a gaseous fuel during the intake process has a negative impact on volumetric efficiency. Supercharging can be a solution for addressing the problem, but at the cost of an increase of complexity, cost and overall dimensions. An alternative path is represented by the 2-stroke cycle, and, in particular, by the opposed piston (OP) design. Most of the existing OP engines are compression ignited, but Spark ignition and direct fuel injection can be implemented without relevant modifications to the layout of cylinders.
Technical Paper

High Performance and Near Zero Emissions 2-Stroke H2 Engine

2023-08-28
2023-24-0068
The paper presents a preliminary study on a virtual 2-stroke 3-cylinder 0.9 L DI SI supercharged engine running on Hydrogen (H2), able to meet both high performance targets and ultra-low emissions limits (NOx<20 ppm). Combustion is similar to a conventional 4-stroke H2 DI engine, while the design of the cylinder and the actuation law of both intake and exhaust valves are specifically optimized for the 2-stroke cycle. In comparison to a more conventional 2-stroke loop scavenged engine, with piston-controlled ports, the use of poppet valves enables a more flexible control of the gas exchange process and to maintain the same design of a 4-stroke engine for pistons, cylinders block, crankcase and lubrication system. On the other hand, it is more difficult to avoid the short-circuit of the fresh charge, while permeability of the valves becomes quite critical at high engine speed.
Technical Paper

Evaluation of TPMS Structures for the Design of High Performance Heat Exchangers

2023-08-28
2023-24-0125
The development of the additive manufacturing technology has enabled the design of components with complex structures that were previously unfeasible with conventional techniques. Among them, the Triply Periodic Minimal Surface (TPMS) structures are gaining scientific interest in several applications. Thanks to their high surface-to-volume ratio, lightweight construction, and exceptional mechanical properties, TPMS structures are being investigated for the production of high-performance heat exchangers to be adopted in different industrial fields, such as automotive and aerospace. Another significant advantage of the TPMS structures is their high degree of design flexibility. Each structure is created by replicating a characteristic unit cell in the three spatial dimensions. The three key parameters, namely cell type, cell dimension and wall thickness can be adjusted to provide considerable versatility in the design process.
Technical Paper

A Comparison of Methanol, Methane and Hydrogen Fuels for SI Engines: Performance and Pollutant Emissions

2023-08-28
2023-24-0037
The urban mobility electrification has been proposed as the main solution to the vehicle emission issues in the next years. However, internal combustion engines have still great potential to decarbonize the transport sector through the use of low/zero-carbon fuels. Alcohols such us methanol, have long been considered attractive alternative fuels for spark ignition engines. They have properties similar to those of gasoline, are easy to transport and store. Recently, great attention has been devoted to gaseous fuels that can be used in existing engine after minor modification allowing to drastically reduce the pollutant emissions. In this regard, this study tries to provide an overview on the use of alternative fuels, both liquid and gaseous in spark ignition engines, highlighting the benefits as well as the criticalities. The investigation was carried out on a small displacement spark ignition engine capable to operate both in port fuel and direct injection mode.
Technical Paper

A 3D-CFD Numerical Approach for Combustion Simulations of Spark Ignition Engines Fuelled with Hydrogen: A Preliminary Analysis

2023-04-11
2023-01-0207
With growing concern about global warming, alternatives to fossil fuels in internal combustion engines are searched. In this context, hydrogen is one of the most interesting fuels as it shows excellent combustion properties such as laminar flame speed and energy density. In this work a CFD methodology for 3D-CFD in-cylinder simulations of engine combustion is proposed and its predictive capabilities are validated against test-bench data from a direct injection spark-ignition (DISI) prototype. The original engine is a naturally aspirated, single cylinder compression ignition (Diesel fueled) unit. It is modified substituting the Diesel injector with a spark plug, adding two direct gas injectors, and lowering the compression ratio to run with hydrogen fuel. A 3D-CFD model is built, embedding in-house developed ignition and heat transfer models besides G-equation one for combustion.
Technical Paper

Preliminary Assessment of Hydrogen Direct Injection Potentials and Challenges through a Joint Experimental and Numerical Characterization of High-Pressure Gas Jets

2022-09-16
2022-24-0014
The interest towards hydrogen fueling in internal combustion engines (ICEs) is rapidly growing, due to its potential impact on the reduction of the carbon footprint of the road transportation sector in a short-term scenario. While the conversion of the existing fleet to a battery-electric counterpart is highly debated in terms of both technical feasibility and life-cycle-based environmental impact, automotive researchers and technicians are exploring other solutions to reduce, if not to nullify, the carbon footprint of the existing ICE fleet. Indeed, ICE conversion to “green” fuels is seen as a promising short-term solution which does not require massive changes in powertrain production and end-of-life waste management. To better evaluate potentials and challenges of hydrogen fueling, a clear understanding of fuel injection and mixture formation prior to combustion is mandatory.
Technical Paper

The Effect of Ethanol and Methanol Blends on the Performance and the Emissions of a Turbocharged GDI Engine Operating in Transient Condition

2022-09-16
2022-24-0037
Direct injection spark ignition engines represent an effective technology to achieve the goal of carbon dioxide emission reduction. Further reduction of the carbon footprint can be achieved by using carbon-neutral fuels. Oxygenated alcohols are well consolidated fuels for spark ignition engines providing also the advantages of knock resistance and low soot tendency production. Methanol and ethanol are possible candidates as alternative fuels to gasoline due to their similar properties. In this study a blend at 25 % v/v of ethanol in gasoline (E25) and a blend with 80% gasoline, 5 % v/v ethanol and 15% v/v of methanol (GEM) were tested. These blends were considered since E25 is already available at fuel pump in some countries. The GEM blend, instead, could represent a valid alternative in the next future. Experiments were carried out on a high performance, turbocharged 1.8 L direct injection spark ignition engine over the Worldwide Harmonized Light Vehicles Test Cycle.
Technical Paper

Development of a Combustion System for a New Generation of 2-Stroke Spark Ignition Engines

2022-09-16
2022-24-0040
Conventional 2-Stroke Spark Ignition engines are characterized by very high power to weight ratios and low manufacturing costs, but also by very low thermal efficiencies and high pollutant emissions. The last issues can be fully addressed by adopting an external scavenging pump and a direct or semi-direct injection system. The implementation of these solutions requires a strong support from CFD simulations, in particular for the optimization of air-fuel mixing and combustion. The paper presents a theoretical study on a new 2-Stroke, three cylinders, 1.3 L, Spark Ignition engine for light aircraft. The power-unit also includes an electric motor connected in parallel with the thermal engine. The latter features a supercharger and a two-stage injection system, made up of a set of low-pressure fuel injectors installed on the transfer ports, and a high-pressure gasoline injector on the cylinder head.
Journal Article

Numerical Characterization of Hydrogen Combustion in a High-Performance Engine: Potentials, Limitations, Modelling Uncertainties

2022-09-16
2022-24-0016
In the last years, pushed by a combination of environmental concerns and technological competition with alternative powertrain architectures, internal combustion engines (ICEs) have seen a growing interest in the adoption of greener fuels. Due to increasing restrictions on ICE tailpipe emissions and loudly advertised bans of ICEs from the passenger car market, OEMs find themselves at a very important crossroad: a complete electrification of their car fleet or the adoption of disruptive solutions in the existing ICE technology, such as the use of carbon-neutral or carbon-free fuels. In this paper the authors provide a CFD assessment of both potentials and limitations of the conversion of an existing direct-injected spark-ignited (DISI) engine for high-performance applications to a hydrogen-fuelled unit. A preliminary validation of the modelling framework for the conventional gasoline fuelling is performed to reduce modelling uncertainties.
Technical Paper

Numerical Comparison of the Performance of Four Cooling Circuit Designs for Proton Exchange Membrane Fuel Cells (PEMFCs)

2022-03-29
2022-01-0685
Polymer Electrolyte Membrane Fuel Cell (PEMFC) are among the most promising technologies as energy conversion devices for the transportation sector due to their potential to eliminate, or greatly reduce, the production of greenhouse gases. One of the current issues with this type of technology is thermal management, which is a key aspect in the design and optimization of PEMFC, whose main aim is an effective and balanced heat removal, thus avoiding thermal gradients leading to a cell lifetime reduction as well as a decrease in the output performance. In addition, a uniform temperature distribution contributes to the achievement of a uniform current density, as it affects the rate of the electrochemical reaction. This is made even more challenging due to the low operating temperature (80°C), reducing the temperature difference for heat dissipation, and leaving a critical role to the design and optimization of the cooling circuit design.
Technical Paper

Design of a Novel 2-Stroke SI Engine for Hybrid Light Aircraft

2021-09-21
2021-01-1179
The trend of powertrain electrification is quickly spreading from the automotive field into many other sectors. For ultra-light aircraft, needing a total installed propulsion power up to 150 kW, the combination of a specifically developed internal combustion engine (ICE) integrated with a state-of-the-art electric system (electric motor, inverter and battery) appears particularly promising. The dimensions and weight of ICE can be strongly reduced (downsizing), so that it can operate at higher efficiency at typical cruise conditions; a large power reserve is available for emergency maneuvers; in comparison to a full electric airplane, the hybrid powertrain makes possible to fly at zero emissions for a much longer time, or with a much heavier payload. On the other hand, the packaging of a hybrid powertrain into existing aircraft requires a specific design of the thermal engine, that must be light, compact, highly reliable and fuel efficient.
Technical Paper

A Simple CFD Model for Knocking Cylinder Pressure Data Interpretation: Part 1

2021-09-05
2021-24-0051
Knock is one of the main limitations on Spark-Ignited (SI) Internal Combustion Engine (ICE) performance and efficiency and so has been the object of study for over one hundred years. Great strides have been made in terms of understanding in that time, but certain rather elementary practical problems remain. One of these is how to interpret if a running engine is knocking and how likely this is to result in damage. Knocking in a development environment is typically quantified based on numerical descriptions of the high frequency content of a cylinder pressure signal. Certain key frequencies are observed, which Draper [1] explained with fundamental acoustic theory back in 1935. Since then, a number of approaches of varying complexity have been employed to correlate what is happening within the chamber with what is measured by a pressure transducer.
X