Refine Your Search

Topic

Search Results

Technical Paper

On-Track Measurement of Road Load Changes in Two Close-Following Vehicles: Methods and Results

2019-04-02
2019-01-0755
As emerging automated vehicle technology is making advances in safety and reliability, engineers are also exploring improvements in energy efficiency with this new paradigm. Powertrain efficiency receives due attention, but also impactful is finding ways to reduce driving losses in coordinated-driving scenarios. Efforts focused on simulation to quantify road load improvements require a sufficient amount of background validation work to support them. This study uses a practical approach to directly quantify road load changes by testing the coordinated driving of two vehicles on a test track at various speeds (64, 88, 113 km/h) and vehicle time gaps (0.3 to 1.3 s). Axle torque sensors were used to directly measure the load required to maintain steady-state speeds while following a lead vehicle at various gap distances.
Technical Paper

Comparison of Stochastic Pre-Ignition Behaviors on a Turbocharged Gasoline Engine with Various Fuels and Lubricants

2016-10-17
2016-01-2291
Stochastic pre-ignition (SPI) has been commonly observed in turbocharged spark-ignition direct-injection (SIDI) engines at low-speed and high-load conditions, which causes extremely high cylinder pressures that can damage an engine immediately or degrade the engine life. The compositions and properties of fuels and lubricants have shown a strong impact on SPI frequency. This study experimentally evaluated SPI behaviors on a 2.0-liter 4-cylinder turbocharged SIDI engine with China V market fuel and China fuel blended to US Tier II fuel specifications. China V market fuel showed significantly higher SPI frequency and severity than China blended US Tier II fuel, which was attributed to its lower volatility between 100 °C to 150 °C (or lower T60 to T90 in the distillation curve). Two different formulations of lubricant oils were also tested and their impact on SPI were compared.
Technical Paper

Performance and Efficiency Assessment of a Production CNG Vehicle Compared to Its Gasoline Counterpart

2014-10-13
2014-01-2694
Two modern light-duty passenger vehicles were selected for chassis dynamometer testing to evaluate differences in performance end efficiency resulting from CNG and gasoline combustion in a vehicle-based context. The vehicles were chosen to be as similar as possible apart from fuel type, sharing similar test weights and identical driveline configurations. Both vehicles were tested over several chassis dynamometer driving cycles, where it was found that the CNG vehicle exhibited 3-9% lower fuel economy than the gasoline-fueled subject. Performance tests were also conducted, where the CNG vehicle's lower tractive effort capability and longer acceleration times were consistent with the lower rated torque and power of its engine as compared to the gasoline model. The vehicles were also tested using quasi-steady-state chassis dynamometer techniques, wherein a series of engine operating points were studied.
Journal Article

Validating Volt PHEV Model with Dynamometer Test Data Using Autonomie

2013-04-08
2013-01-1458
The first commercially available Plug-In Hybrid Electric Vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in December 2010. The Volt's powertrain architecture provides four modes of operation, including two that are unique and maximize the Volt's efficiency and performance. The electric transaxle has been specially designed to enable patented operating modes both to improve the electric driving range when operating as a battery electric vehicle and to reduce fuel consumption when extending the range by operating with an internal combustion engine (ICE). However, details on the vehicle control strategy are not widely available because the supervisory control algorithm is proprietary. Since it is not possible to analyze the control without vehicle test data obtained from a well-designed Design-of-Experiment (DoE), a highly instrumented GM Volt, including thermal sensors, was tested at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF).
Journal Article

Developing a Utility Factor for Battery Electric Vehicles

2013-04-08
2013-01-1474
As new advanced-technology vehicles are becoming more mainstream, analysts are studying their potential impact on petroleum use, carbon emissions, and smog emissions. Determining the potential impacts of widespread adoption requires testing and careful analysis. PHEVs possess unique operational characteristics that require evaluation in terms of actual in-use driving habits. SAE J2841, “Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data,” published by SAE in 2009 with a revision in 2010, is a guide to using DOT's National Household Travel Survey (NHTS) data to estimate the relative split between driving in charge-depleting (CD) mode and charge-sustaining (CS) mode for a particular PHEV with a given CD range. Without this method, direct comparisons of the merits of various vehicle designs (e.g., efficiency and battery size) cannot be made among PHEVs, or between PHEVs and other technologies.
Technical Paper

Effect of DPF Design Parameters on Fuel Economy and Thermal Durability

2012-04-16
2012-01-0847
Diesel particle filters (DPF) have become the standard and essential aftertreatment components for all on-road diesel engines used in the US and Europe. The OBD requirements for DPF are becoming rigorously strict starting from 2015 model year. The pressure sensor or other strategies currently used for DPF diagnostics will most likely become insufficient to meet the new OBD requirements and a post DPF soot sensor might be necessary. This means that it will be even more imperative to develop a DPF design that would not have any soot leaks in its emission lifetime, otherwise the DPF will become a high warranty item.
Journal Article

Design of Engine-Out Virtual NOx Sensor Using Neural Networks and Dynamic System Identification

2011-04-12
2011-01-0694
Fuel economy improvement and stringent emission regulations worldwide require advanced air charging and combustion technologies, such as low temperature combustion, PCCI or HCCI combustion. Furthermore, NOx aftertreatment systems, like Selective Catalyst Reduction (SCR) or lean NOx trap (LNT), are needed to reduce vehicle tailpipe emissions. The information on engine-out NOx emissions is essential for engine combustion optimization, for engine and aftertreatment system development, especially for those involving combustion optimization, system integration, control strategies, and for on-board diagnosis (OBD). A physical NOx sensor involves additional cost and requires on-board diagnostic algorithms to monitor the performance of the NOx sensor.
Technical Paper

Optimization of an Electric Turbo Compounding System for Gasoline Engine Exhaust Energy Recovery

2011-04-12
2011-01-0377
A large proportion (about 33%) of the fuel energy is lost through exhaust gas in a gasoline engine. Electric turbo compounding (ETC) is a promising technology for gasoline engine exhaust energy recovery. In this paper, optimization of an ETC system for turbocharged gasoline engines is carried out. The ETC system has a turbo-generator that is in parallel with the turbocharger, the flow distribution between the turbocharger and the turbo-generator is controlled. The engine exhaust energy is recovered by the turbo-generator with fixed geometry turbine (FGT) or variable nozzle turbine (VNT). The design and control of the ETC system are optimized for best recovery of engine exhaust energy at engine full load and part load operating conditions. The system performance is studied by 1D simulation methods. The gasoline engine is modeled with the GT-POWER software and the turbochargers and turbo-generators are modeled with turbo through-flow models.
Technical Paper

Controls Development for Clutch-Assisted Engine Starts in a Parallel Hybrid Electric Vehicle

2011-04-12
2011-01-0870
In a parallel hybrid electric vehicle, higher fuel economy gains are typically achieved if significant electric drive (or engine-off) operation is possible, shifting the engine operating schedule so that it only runs at medium to high load for best efficiency. To enable efficient engine-off driving, a typical configuration will have a disconnect clutch between the engine and the rest of the driveline. In some configurations, when engine-on operation is requested the disconnect clutch is applied in conjunction with the traction motor/generator to crank the engine (i.e., a flying engine start). In this paper we describe the development of a control system for a flying engine start using an engine disconnect clutch. The clutch is located between the engine and electric motor, which is connected to the input of a multispeed transmission. We first describe an initial control algorithm evaluation using a driveline model.
Technical Paper

Modeling and Drivability Assessment of a Single-Motor Strong Hybrid at Engine Start

2010-05-05
2010-01-1440
Using a clutch to disconnect and shut-off the engine when engine power is not required, the single-motor strong hybrid has the potential for significant fuel economy improvement with reduced costs and less system complexity. However, it is a challenge for the single-motor strong hybrid to maintain acceptable drivability at engine start since it requires diverting motor torque through a slipping clutch to start the engine. In this study, dynamic simulations of the hybrid transmission driveline with hydraulic and motor controls have been employed to assess the feasibility of the single-motor strong hybrid, to address drivability issues specific to this hybrid architecture at engine start, and to develop control methods to manage driveline disturbances to an acceptable level.
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Technical Paper

Investigation into Different DPF Regeneration Strategies Based on Fuel Economy Using Integrated System Simulation

2009-04-20
2009-01-1275
An integrated system model containing sub-models for a multi-cylinder diesel engine, NOx and soot(PM) emissions, diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) has been developed to simulate the engine and aftertreatment systems at transient engine operating conditions. The objective of this work is two-fold; ensure correct implementation of the integrated system level model and apply the integrated model to understand the fuel economy trade-off for various DPF regeneration strategies. The current study focuses on a 1.9L turbocharged diesel engine and its exhaust system. The engine model was built in GT-Power and validated against experimental data at full-load conditions. The DPF model is calibrated for the current engine application by matching the clean DPF pressure drop for different mass flow rates. Load, boost pressure, speed and EGR controllers are tuned and linked with the current engine model.
Technical Paper

Evaluating the Effects of Restraint Systems on Four Wheel Drive Testing Methodologies: A Collaborative Effort between NVFEL and ANL

2009-04-20
2009-01-1522
Testing vehicles for emissions and fuel economy has traditionally been conducted with a single-axle chassis dynamometer. The 2006 SAE All Wheel Drive Symposium cited four wheel drive (4WD) and all wheel drive (AWD) sales as climbing from 20% toward 30% of a motor vehicle market share. With an increasing number of four wheel-drive vehicles being introduced to the market place, certification testing for emissions and fuel economy has been changed to allow both two wheel drive and four wheel drive testing [1]. As manufacturers plan to test these vehicles in this mode, test methods need to be developed to allow for these changes. This paper focuses on the tie down methods available for 4WD testing to determine possible effects of test methodologies on a traditional 4WD Vehicle and a hybrid vehicle.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Technical Paper

Electronic Particulate Matter Sensor – Mechanisms and Application in a Modern Light-Duty Diesel Vehicle

2009-04-20
2009-01-0647
An electronic particulate matter sensor (EPMS) developed at the University of Texas was used to characterize exhaust gases from a single-cylinder diesel engine and a light-duty diesel vehicle. Measurements were made during transient tip-in events with multiple sensor configurations in the single-cylinder engine. The sensor was operated in two modes: one with the electric field energized, and the other with no electric field present. In each mode, different characteristic signals were produced in response to a tip-in event, highlighting the two primary mechanisms of sensor operation. The sensor responded to both the natural charge of the particulate matter (PM) emitted from the engine, and was also found to create a signal by charging neutral particles. The characteristics of the two mechanisms of operation are discussed as well as their implications on the placement and operation of the sensor.
Journal Article

Architecture Design and Analysis of Diesel Engine Exhaust Aftertreatment System and Comparative Study with Close-coupled DOC-DPF System

2008-06-23
2008-01-1756
In response to the emissions standards for diesel engines, it is essential to have separate aftertreatment devices for controlling the specific tailpipe emissions like HC, CO, NOx, and particulate matter. An advanced diesel exhaust aftertreatment system consists of channel-flow catalytic converters such as diesel oxidation catalyst (DOC), selective catalyst reduction (SCR) and wall-flow diesel particulate filters (DPF) each with discrete functions. Because of this multi-component aftertreatment system configuration, there are an increase in system complexity, development time and cost for doing experiments in order to evaluate various options and find the optimum aftertreatment system architecture. The objective of this work is the development and application of an integrated aftertreatment system model including DOC, SCR, DPF and all connecting pipes. The study includes the baseline system performance, i.e.
Technical Paper

Further Development of an Electronic Particulate Matter Sensor and Its Application to Diesel Engine Transients

2008-04-14
2008-01-1065
This paper presents the latest developments in the design and performance of an electronic particulate matter (PM) sensor developed at The University of Texas at Austin (UT) and suitable, with further development, for applications in active engine control of PM emissions. The sensor detects the carbonaceous mass component of PM in the exhaust and has a time-resolution less than 20 (ms), allowing PM levels to be quantified for engine transients. Sample measurements made with the sensor in the exhaust of a single-cylinder light duty diesel engine are presented for both steady-state and transient operations: a steady-state correlation with gravimetric filter measurements is presented, and the sensor response to rapid increases in PM emission during engine transients is shown for several different tip-in (momentary increases in fuel delivery) conditions.
Technical Paper

Modeling of Copper-Zeolite and Iron-Zeolite Selective Catalytic Reduction (SCR) Catalysts at Steady State and Transient Conditions

2008-04-14
2008-01-0615
Selective Catalytic Reduction (SCR) is effective over a wide temperature window to reduce NOx emissions from engine exhaust during lean operations. In this study, different supplier SCR catalysts are investigated and modeled. A global Ammonia SCR reaction mechanism has been used, and kinetic parameters for selective catalytic reduction of NOx by Ammonia were developed for both Copper (Cu)-zeolite and Iron (Fe)-zeolite SCR catalysts. The kinetic analysis was performed using a commercial one dimensional (1-D) aftertreatment code, coupled with an optimizer. The optimized kinetics have been validated extensively with laboratory reactor data for various operating conditions on three supplier catalysts - two Copper and one Iron based formulations. Both steady state and transient tests are performed and the developed SCR models are shown to agree with the experimental measurements reasonably well.
Technical Paper

Integrated Engine, Emissions, and Exhaust Aftertreatment System Level Models to Simulate DPF Regeneration

2007-10-29
2007-01-3970
An integrated system model containing sub-models for diesel engine, emissions, and aftertreatment devices has been developed. The objective is to study engine-device and device-device interactions. The emissions sub-models used are for NOx and PM (particulate matter) prediction. The aftertreatment sub-models used include a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF). Controllers have also been developed to allow for transient simulations, active DPF regeneration, and prevention/control of runaway DPF regenerations. The integrated system-level model has been used to simulate DPF regeneration via exhaust fuel injection ahead of the DOC. In addition, the controller model can use intake throttling to assist in active DPF regeneration if needed. Regeneration studies have been done for both steady engine load and with load transients. High to low engine load transients are of particular interest because they can lead to runaway DPF regeneration.
Technical Paper

Development of an Integrated Diesel Exhaust Aftertreatment Simulation Tool with Applications in Aftertreatment System Architecture Design

2007-04-16
2007-01-1138
As emissions regulations are becoming increasingly stringent worldwide, multiple exhaust aftertreatment devices are considered in order to minimize diesel engine tailpipe emissions. This paper presents the development of an integrated model of an advanced diesel aftertreatment system that consists of a diesel oxidation catalyst (DOC), a Lean NOx Trap (LNT), a diesel particulate filter (DPF), and connecting exhaust pipes. All component models are incorporated into a unified diesel exhaust aftertreatment simulation tool with uniform I/O in MATLAB/Simulink. The platform and approach to incorporate all component models into a single system model are described. The developed integrated diesel aftertreatment system model has been employed to simulate tailpipe emissions of a light-duty vehicle over the US Federal Test Procedure (FTP) emission certification cycle.
X