Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles

2016-04-05
2016-01-0236
It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts.
Technical Paper

A New Ignitior for Large-Bore Natural Gas Engines - Railplug Design Improvement and Optimization

2005-04-11
2005-01-0249
It is a very challenging problem to reliably ignite extremely lean mixtures, especially for the low speed, high load conditions of large-bore natural gas engines. If these engines are to be use for the distributed power generation market, it will require operation with higher boost pressures and even leaner mixtures. Both place greater demands on the ignition system. The railplug is a very promising ignition system for lean burn natural gas engines with its high-energy deposition and high velocity plasma arc. It requires care to properly design railplugs for this new application, however. For these engines, in-cylinder pressure and mixture temperature are very high at the time of ignition due to the high boost pressure. Hot spots may exist on the electrodes of the ignitor, causing pre-ignition problems. A heat transfer model is proposed in this paper to aid the railplug design. The electrode temperature was measured in an operating natural gas engine.
Technical Paper

Effects of Swirl and Tumble on In-Cylinder Fuel Distribution in a Central Injected DISI Engine

2000-03-06
2000-01-0533
The effect of the in-cylinder bulk flow on fuel distributions in the cylinder of a motored direct-injection S.I. engine was measured. Five different bulk flows were induced through combinations of shrouded and unshrouded valves, and port deactivation: stock, high tumble, reverse tumble, swirl, and swirl/tumble. Planar Mie scattering was used to observe the fuel spray movement in the centerline plane of a transparent cylinder engine. A fiber optic instrumented spark plug was used to measure the resulting cycle-resolved equivalence ratio in the vicinity of the spark plug. The four-valve engine had the injector located on the cylinder axis; the fiber optic probe was located between the intake valves. Injection timings of 90, 180, and 270 degrees after TDC were examined. Measurements were made at 750 and 1500 rpm with certification gasoline at open throttle conditions. From the images it was found that the type and strength of the bulk flow greatly affected the spray behavior.
Technical Paper

Fuel Spray Dynamics and Fuel Vapor Concentration Near the Spark Plug in a Direct-Injected 4-Valve SI Engine

1999-03-01
1999-01-0497
The mixture preparation process was investigated in a direct-injected, 4-valve, SI engine under motored conditions. The engine had a transparent cylinder liner that allowed the fuel spray to be imaged using laser sheet Mie scattering. A fiber optic probe was used to measure the vapor phase fuel concentration history at the spark plug location between the two intake valves. The fuel injector was located on the cylinder axis. Two flow fields were examined; the stock configuration (tumble index 1.4) and a high tumble (tumble index 3.4) case created using shrouded intake valves. The fuel spray was visualized with the engine motored at 750 and 1500 RPM. Start of injection timings of 90°, 180° and 270° after TDC of intake were examined. The imaging showed that the fuel jet is greatly distorted for the high tumble condition, particularly at higher engine speeds. The tumble was large enough to cause significant cylinder wall wetting under the exhaust valves for some conditions.
Technical Paper

The Effects of Fuel Composition, System Design, and Operating Conditions on In-System Vaporization and Hot Start of a Liquid-Phase LPG Injection System

1998-05-04
981388
A liquid-phase port injection system for liquefied petroleum gas (LPG) generally consists of a fuel storage tank with extended capability of operating up to 600 psi, a fuel pump, and suitable fuel lines to and from the LPG fuel injectors mounted in the fuel rail manifold. Port injection of LPG in the liquid phase is attractive due to engine emissions and performance benefits. However, maintaining the LPG in the liquid phase at under-hood conditions and re-starting after hot soak can be difficult. Multiphase behavior within a liquid-phase LPG injection system was investigated computationally and experimentally. A commercial chemical equilibrium code (ASPEN PLUS™) was used to model various LPG compositions under operating conditions.
Technical Paper

In-Cylinder Fuel Transport During the First Cranking Cycles in a Port Injected 4-Valve Engine

1997-02-24
970043
Fuel transport was visualized within the cylinder of a port injected four-valve SI engine having a transparent cylinder liner. Measurements were made while motoring at 250 rpm to simulate cranking conditions prior to the first firing cycle, and at 750 rpm to examine the effects of engine speed. A production GM Quad-4 cylinder head was used, and the stock single-jet port fuel injector was used to inject indolene. A digital camera was used to capture back-lighted images of cylinder wall wetting for open and closed intake valve injection. In addition, two-dimensional planar imaging of Mie scattering from the indolene fuel droplets was used to characterize the fuel droplet distribution as a function of crank angle for open and closed intake valve injection. LDV was used to measure the droplet and air velocities near the intake valves during fuel induction. It was found that with open-valve injection a large fraction of the fuel impinged on the cylinder wall opposite the intake valves.
Technical Paper

A Fractal-Based SI Engine Model: Comparisons of Predictions with Experimental Data

1991-02-01
910079
A quasidimensional engine simulation which uses the concepts of fractal geometry to model the effects of turbulence on flame propagation in a homogeneous charge SI engine has been developed. Heat transfer and blowby/crevice flow submodels are included in this code and the submodels chosen are found to be reasonable. The model predictions of cylinder pressure histories are then compared with experimental data over a range of loads, equivalence ratios, and engine speeds. The model is not adjusted in any manner to yield better agreement with the data, other than by tuning the simple turbulence model used so as to yield agreement with data for the nonreacting flow. However, current information about the flame wrinkling scales in an engine is inadequate. Therefore, predictions are made for three different assumptions about the flame wrinkling scales which span the range of physically possible scales.
X