Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Placement Technique of Measurement Points for Inverse Acoustic Analysis

2015-11-17
2015-32-0747
This paper describes a measurement points' placement technique for the sound source identification using inverse acoustic analysis. In order to reduce noise in NVH problem for various kinds of machines including small size engine, it is necessary to identify the sound source. The inverse acoustic analysis is a technique that is effective for the sound source identification.[1,2] The inverse acoustic analysis identifies a surface vibration of an object by measuring the radiated sound and solving the inverse problem. Nakano et al. researched about the location of sound pressure measurement points for accurate improvement.[3] They clarified that the sound pressure measurement points on the concentric circle gave more accurate surface vibration than the measurement points on the square lattice.
Technical Paper

Natural Frequency Analysis of Tire Vibration Using a Thin Cylindrical Shell Model

2015-06-15
2015-01-2198
Early studies on the tire vibration characteristics of road noise focused on radial modes of vibration because these modes are dominant in vertical spindle force. However, recent studies of Noise, Vibration and Harshness (NVH) prediction have suggested that tire modeling not only of radial modes, but also of lateral vibration, including lateral translational and lateral bending modes, affect interior noise. Thus, it is important to construct tire dynamic models with few degrees of freedom for whole-vehicle analysis of NVH performance. Existing tire dynamics model can't express tire lateral vibrations. This paper presents a new approach for tire vibration analysis below 200Hz, and a formula for tire natural frequencies. First, a tire dynamic model is developed based on the thin cylindrical shell theory. Kinetic and potential energies are derived. Mode shape function is also derived by the assumption of inextensility in the neutral of the tread ring.
Journal Article

Digging Trajectory Optimization by Soil Models and Dynamics Models of Excavator

2013-09-24
2013-01-2411
Researches for automated construction machinery have been conducted for labor-saving, improved work efficiency and worker's safety, where a tracking control function was proposed as one of the key control system strategies for highly automated productive hydraulic excavators. An optimized digging trajectory that assures as much soils scooped as possible and less energy consumption is critical for an automated hydraulic excavator to improve work efficiency. Simulation models that we used to seek an optimized digging trajectory in this study consist of soil models and front linkage models of a hydraulic excavator. We developed two types of soil models. One is called wedge models used to calculate reaction forces from soils acting on a bucket during digging operation, based on the earth pressure theory. The other is called Distinct Element Method (DEM) model used to analyze soil behaviors and estimate amounts of soils scooped and reaction forces quantitatively.
Technical Paper

Prediction of Spindle Force Using Measured Road Forces on Rolling Tire

2009-05-19
2009-01-2107
Improvement of vehicle interior noise is desired in recent years in the modern world of the demand of low weight, good fuel economy and offering technical advantages strongly. The dynamic force transmission of rolling tires from the road surface to the spindles is a critical factor in vehicle interior noise. We focus on structure-borne noise transferred through the spindle. It is necessary for effort of the effective tire/road noise reduction to predict spindle force excited by tire/road contact. The major issues in predicting spindle forces are to clarify the distribution of road forces and how to input on the simulation model. Therefore, it is important that road forces are measured accurately on the rolling tire. First, the dynamic road forces on the rolling tire are measured by using the tri-axial force sensor directly. In efforts to reduce interior noise due to structure-borne noise, it is necessary to predict spindle forces excited by the tire/road contact.
Technical Paper

Dynamic Analysis of Rolling Tire Using Force Sensor and Transfer Path Identification

2007-05-15
2007-01-2254
The demand for quieter vehicle interiors increases year after year. The dynamic force transmission of rolling tires from the road surface to the spindles is a critical factor in vehicle interior noise. We investigated the dynamic force transmission of a rolling tire as it relates to reducing vehicle interior noise. A test with a tire rolling over a cleat was conducted in order to measure the road forces and the spindle forces. The transfer function of the rolling tire was identified from the experimental results by applying multi dimensional spectral analysis. In addition, Computer Aided Engineering (CAE) technology has advanced recently. This enables prediction of spindle forces early in the design stage. One of the most important issues in predicting spindle forces accurately is to clarify the distribution of road forces. This paper also describes the distribution of the dynamic road forces of the rolling tire.
Technical Paper

Application of Multi-objective Optimization to Exhaust Silencer Design

2007-05-15
2007-01-2210
This paper describes how use of multi-objective optimization of pulsating noise and backpressure improved an exhaust silencer for diesel drive equipment. Low frequency pulsating noise and backpressure were simultaneously predicted using one-dimensional fluid dynamics and acoustic analysis by BEM. In addition, an experiment was done to investigate the relation between high frequency noise including flow-induced noise and the dimensions of perforations in silencer pipes. Finally, a prototype of the exhaust silencer was built and examined in order to confirm the effects of these design methods mentioned. As predicted, exhaust noise was reduced without increasing backpressure.
Technical Paper

Optimization of Profile fo r Reduction of Piston Slap Excitation

2004-09-27
2004-32-0022
This paper presents an analytical model for the prediction of piston secondary motion and the vibration due to piston slap. For the modeling of piston slap phenomenon, cylinder liner is modeled as a several spring-mass system that are connected by modal characteristics, and lubricant film between the piston and the cylinder is modeled as reaction force vectors which excite resonant mode of them. By comparing experimental results and analytical ones, the validity of the proposed model has been confirmed. The optimization of the piston skirt profile is also carried out with the analytical model, and it is confirmed that the round shape of the lower part of piston skirt is effective for the reduction of piston slap excitation.
Technical Paper

A Stiffness Optimization Procedure for Automobile Rubber Mounts

2001-04-30
2001-01-1445
Generally, it is well known that road noise generated by vibration from automobile tires and suspensions can be reduced by changing the stiffness of the rubber mounts installed in the suspension systems. Such stiffness, however, is rarely changed to avoid riding discomfort and so on. In this paper, a stiffness optimization method for suspension system rubber mounts that reduces road noise, and improves riding comfort as well, is presented. In the process, Road Noise Contribution Analysis (RNCA) is applied to the target vehicle to specify the major factors of road noise. Furthermore, the suspension system of the vehicle is investigated by Sensitivity Analysis using Measured FRF data (SAMF) to identify the optimal stiffness combination of rubber mounts. As a result, an effective stiffness combination of two mounts is specified to reduce road noise and to improve riding comfort.
Technical Paper

Reduction of Piston Slap Excitation with Optimization of Piston Profile

2000-06-12
2000-05-0317
This paper presents the analytical method of piston secondary motion with an experimental verification for a small gasoline engine. To analyze the vibration, a modeling of the piston secondary motion is carried out and numerical simulation is performed. In this method, both dynamic characteristics of the part of piston skirt and cylinder liner are taken into consideration. As compared the simulated results with the experimental results, the validity of presented model has been confirmed and this numerical model is effective to comprehend the piston slap secondary motion.
Technical Paper

Structural Optimization of Tractor Frame for Noise and Vibration Reduction

1999-09-14
1999-01-2822
In this paper, the modeling technique of the dynamic characteristics of the monocoque-type tractor frame, and the reduction technique of the noise and vibration of the tractor by the design modification of the frame are proposed. First, the vibration characteristics on each part of the tractor, and the noise characteristic in the cabin are measured. Secondly, the full-structure of the frame is separated into the sub-structures of cases and joint parts, and each one is modeled. Then, the model accuracy is improved by using the model tuning method with the sensitivity analysis. Finally, the design change of the frame is carried out with the object of increasing stiffness while reducing weight. As the result of this modification, the cabin noise level can be effectively suppressed about 4 [dB].
X