Refine Your Search

Topic

Search Results

Technical Paper

Enhancing Lateral Stability in Adaptive Cruise Control: A Takagi-Sugeno Fuzzy Model-Based Strategy

2024-04-09
2024-01-1962
Adaptive cruise control is one of the key technologies in advanced driver assistance systems. However, improving the performance of autonomous driving systems requires addressing various challenges, such as maintaining the dynamic stability of the vehicle during the cruise process, accurately controlling the distance between the ego vehicle and the preceding vehicle, resisting the effects of nonlinear changes in longitudinal speed on system performance. To overcome these challenges, an adaptive cruise control strategy based on the Takagi-Sugeno fuzzy model with a focus on ensuring vehicle lateral stability is proposed. Firstly, a collaborative control model of adaptive cruise and lateral stability is established with desired acceleration and additional yaw moment as control inputs. Then, considering the effect of the nonlinear change of the longitudinal speed on the performance of the vehicle system.
Technical Paper

Road Feel Modeling and Return Control Strategy for Steer-by-Wire Systems

2024-04-09
2024-01-2316
The steer-by-wire (SBW) system, an integral component of the drive-by-wire chassis responsible for controlling the lateral motion of a vehicle, plays a pivotal role in enhancing vehicle safety. However, it poses a unique challenge concerning steering wheel return control, primarily due to its fundamental characteristic of severing the mechanical connection between the steering wheel and the turning wheel. This disconnect results in the inability to directly transmit the self-aligning torque to the steering wheel, giving rise to complications in ensuring a seamless return process. In order to realize precise control of steering wheel return, solving the problem of insufficient low-speed return and high-speed return overshoot of the steering wheel of the SBW system, this paper proposes a steering wheel active return control strategy for SBW system based on the backstepping control method.
Technical Paper

Functional Safety Concept Design of Vehicle Steer-by-Wire System

2024-04-09
2024-01-2792
Steer-By-Wire (SBW) system directly transmits the driver's steering input to the wheels through electrical signals. However, the reliability of electronic equipment is significantly lower than that of mechanical structures, and the risk of failure increases, so it is important to conduct functional safety studies on SBW systems. This paper develops the functional safety of the SBW system according to the requirements of the international standard ISO26262, and first defines the relevant items and application scope of SBW system. Secondly, the Hazard and Operability (HAZOP) method was used to combine scenarios and possible dangerous events to carry out Hazard Analysis and Risk Assessment (HARA), and the Automotive Safety Integrity Level (ASIL) was obtained according to the three evaluation indicators of Exposure, Severity and Controlabillity, and then the corresponding safety objectives were established and Fault Tolerant Time Interval (FTTI) was set.
Technical Paper

Coordinated Control of Trajectory Tracking and Yaw Stability of a Hub-Motor-Driven Vehicle based on Four-Wheel-Steering

2024-04-09
2024-01-2767
In order to improve the trajectory tracking accuracy and yaw stability of vehicles under extreme conditions such as high speed and low adhesion, a coordinated control method of trajectory tracking and yaw stability is proposed based on four-wheel-independent-driving vehicles with four-wheel-steering. The hierarchical structure includes the trajectory tracking control layer, the lateral stability control decision layer, and the four-wheel angle and torque distribution layer. Firstly, the upper layer establishes a three-degree-of-freedom vehicle dynamics model as the controller prediction model, the front wheel steering controller is designed to realize the lateral path tracking based on adaptive model predictive control algorithm and the longitudinal speed controller is designed to realize the longitudinal speed tracking based on PID control algorithm.
Technical Paper

Research on Control Strategy of Hierarchical Architecture Based on Drive-by-Wire Chassis

2023-04-11
2023-01-0819
The rapid development of city traffic makes the driving conditions faced by vehicles increasingly complex. The drive-by-wire chassis vehicle has the characteristics of four-wheel independent steering, four-wheel independent drive and four-wheel independent braking, which has become a current research hotspot because that can meet various complex working conditions. However, it is precisely because of the high degree of controllability of the drive-by-wire chassis that the research on the control strategy has become difficult. In this paper, an integrated control strategy based on the hierarchical algorithm framework is designed for the drive-by-wire chassis vehicle, which includes a centralized control layer, a tire force distribution layer and an actuator control layer.
Technical Paper

A Feasible Driver-Vehicle Shared Steering Control Actuation Architecture Based on Differential Steering

2022-12-22
2022-01-7080
To address the current situation of the limited driver-vehicle cooperative steering actuation structure, this paper proposes a feasible driver-vehicle shared steering control actuation architecture based on the differential steering. Firstly, a shared steering execution architecture is established, which contains traditional steering system controlled by human driver and differential steering system acting as the automatic execution system. In this paper, a specific driver-vehicle shared control architecture is established with the front-wheel hub motor-based differential steering system and a single-view angle based human driver model. Then, an upper-level sliding mode controller for path tracking is developed and implemented as the automatic steering system, and the driver-vehicle shared control is achieved by the proposed non-cooperative game model.
Technical Paper

Research on Control Strategy Optimization for Shifting Process of Pure Electric Vehicle Based on Multi-Objective Genetic Algorithm

2020-04-14
2020-01-0971
With more and more countries proposing timetables for stopping selling of fuel vehicles, China has also issued a “dual-slope” policy. As electric vehicles are the most promising new energy vehicle, which is worth researching. The integration and control of the motor and gearbox have gradually become a hot research topic due to low cost with better performance. This paper takes an electric vehicle equipped with permanent magnet synchronous motor and two-gear automatic transmission without synchronizer and clutch as the research object.
Technical Paper

Braking Control Strategy Based on Electronically Controlled Braking System and Intelligent Network Technology

2019-11-04
2019-01-5038
In order to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers, a braking control strategy based on Electronically Controlled Braking System (EBS) and intelligent network technology under non-emergency braking conditions is proposed. The controller utilizes the intelligent network technology’s characteristics of the workshop communication to obtain the driving environment information of the current vehicle firstly, and then calculate the optimal braking deceleration of the vehicle based on optimal control method. The strategy will distribute the braking force according to the ideal braking force distribution condition based on the EBS according to the braking deceleration; the braking force will be converted to braking pressure according to brake characteristics. Computer co-simulations of the proposed strategy are performed, the strategy is verified under different initial speeds.
Technical Paper

Research on the Control Strategy of Trailer Tracking Tractor for Articulated Heavy Vehicles

2019-11-04
2019-01-5054
The purpose of this paper is to improve the path-following capability and high-speed lateral stability of the articulated heavy vehicles (AHVs). The six-axle heavy articulated vehicle was taken as the research object, in order to simplify the control design, the three-axle trailer of the articulated vehicles was simplified to a single-axle trailer. The Newton's second law was applied to the tractor unit and the single-axle trailer unit respectively, a three-degree-of-freedom vehicle yaw plane model was established, and its state space equation was derived. The trailer steering controller was designed by linear quadratic regulator (LQR) technique. At the same time, the optimal index function was determined by combining the vehicle state variables, and the optimal control input was obtained by using the algebraic Riccati equation.
Technical Paper

Research on Control Algorithm of Active Steering Control Based on the Driver Intention

2019-11-04
2019-01-5064
Active steering technology can improve the operability of the driver by the involvement to the steering system. Driver is the major controller of the vehicle Therefore, the involvement of advanced technologies including the active steering technology shouldn’t interfere with the intention of the driver, and the driver should still have great control of the vehicle. The aim of this paper is to solve the problem of the driver’s control when the active steering system works to improve the flexibility of the low speed and the stability of the high speed, and the active steering model based on the driver’s steering intention is established. Through the CarSim simulation software, this paper adopts 9 parameters related to the vehicle steering of the DLC (Double Line Change). And PCA (Principal Component Analysis) algorithm, a tool of statistical analysis, is applied to select 4 parameters which can stand for the DLC from the 9 parameters, which makes the data processing easier.
Technical Paper

Research on Constant Speed Control Strategy of Water Medium Retarders for Heavy-Duty Vehicles

2019-04-02
2019-01-1304
Hydraulic retarders are extensively used in heavy-duty vehicles because of their advantages, such as their large braking torque and long continuous operating hours. They can reduce the vehicle velocity by converting the kinetic energy of a traveling vehicle to the thermal energy of the working fluid. The water medium retarder is a new type of hydraulic retarder with the characteristics of high power density and simple structure. It uses the engine's coolant as the working medium, and the heat is directly taken away by the vehicle cooling system. Therefore, the heavy-duty vehicle can achieve long-term continuous braking during the downhill process. One of the main functions of water medium retarder is driving downhill at a constant speed which determines whether the vehicle drives stably and safely. Therefore, studying the constant-speed control strategy during downhill driving is particularly important.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Journal Article

Comparison of Active Front Wheel Steering and Differential Braking for Yaw/Roll Stability Enhancement of a Coach

2018-04-03
2018-01-0820
Both active front wheel steering (AFS) and differential braking control (DBC) can improve the vehicle handling and stability. In this article, an AFS strategy and a DBC strategy are proposed and compared. The strategies are as follows: A yaw instability judging module and a rollover instability judging module are put forward to determine whether the coach is in a linear state and whether the additional torque/angle module should be actuated. The additional torque module based on linear quadratic regulator (LQR) and the additional steering wheel angle module based on adaptive proportion integral differential (PID) fuzzy controller are designed to make the actual yaw rate and sideslip angle track the reference yaw rate and sideslip angle. Under some typical driving conditions such as sinusoidal, J-turning, crosswind, and straight-line brake maneuver on the μ-split road, simulation tests are carried out for the coach with no control, DBC strategy, and AFS control, respectively.
Technical Paper

Design, Development and Application of Test Bench for Electrically Controlled Steering Systems

2018-04-03
2018-01-0702
This essay aims to develop an electrically controlled steering test bench and lay a solid foundation for the development of steering system. The first part mainly introduces the function, structure and working principle of the test bench. For the hardware system, it includes the steering system, fixture, sensors as well as a frameless disk motor for carrying out automatic motor input, and a dual linear motor system selected as the road resistance simulation actuator. As for the software, MATLAB/Simulink, CarSim, RTI and ControlDesk are used. Therefore, with the help of real-time simulation platform, researchers can not only build control strategy and dynamic model but also control the experiment and tune parameters in real-time. The second part of the essay aims to identify both electric and mechanical parameters of R-EPS system by carrying out tests on the proposed test bench. As parameters are successfully identified, the feasibility of the test bench is also verified.
Technical Paper

A Fault-Tolerant Control Method for 4WIS/4WID Electric Vehicles Based on Reconfigurable Control Allocation

2018-04-03
2018-01-0560
This paper presents a fault-tolerant control (FTC) method for four-wheel independently driven and steered (4WIS/4WID) electric vehicles based on a reconfigurable control allocation to increase the flexibility for vehicle control and improve the safety of vehicle after the steering actuator fails. The proposed fault tolerant control method consists of the following three parts: 1) a fault detection and diagnosis (FDD) module that monitors vehicle steering condition, detects and diagnoses actuator failures; 2) an upper controller that computes the generalized forces/moments to track the desired vehicle motion and trajectory; 3) a reconfigurable control allocator that optimally distributes the generalized forces/moments to four wheels. The FTC approach based on the reconfigurable control allocation reallocates the generalized forces/moments among healthy steering actuators and driving motors once the actuator failures is detected.
Technical Paper

Transmission Gear Whine Control by Multi-Objective Optimization and Modification Design

2018-04-03
2018-01-0993
Transmission gear whine noise is one of the main noise problems in powertrain NVH, which is caused by dynamic meshing force of gear pairs, it acts as transmission error. Due to the coupling effects of transmission gears, shaft, bearings and housing, it needs comprehensive management from many aspects to solve the problem of gear whine noise. Aiming at gear whine noise of a 4-speed AMT used in electric bus, the main noise sources is identified by using the order tracking analysis approach firstly. Secondly, gear misalignment and contributions of system deformation to the misalignment is analyzed by means of simulation tools, and the factor is taken into account in the subsequent gear modification design. At last, based on the improved Smith slice method, the calculation model of transmission error of helical gears is established.
Technical Paper

Fuzzy PID Based Optimization of Starting Control for AMT Clutch of Heavy-duty Trucks

2018-04-03
2018-01-1166
Starting control has become a troublesome issue in the developing field of the control system for heavy-duty trucks, due to the complexity of vehicle driving and the variability of driver's intention. The too fast clutch engagement may result in serious impact, influence on the comfort and fatigue life, and even the engine flameout, while the too slow clutch engagement may lead to long time of friction, the increased temperature, and accelerated wear of friction pair, as well as influence on the power performance and fatigue life[1]. Therefore, the key technique of starting control is clutch engagement control, for which the fuzzy PID based optimization of starting control for AMT clutch is proposed, with the pneumatic AMT clutch of heavy-duty trucks as the research object.
Technical Paper

Research on Optimal Gearshift Strategy for Stepped Automatic Transmission Based on Vehicle Power Demand

2017-03-28
2017-01-1108
Selection of gearshift point plays an important role in the field of automatic transmission technology, which directly affects the vehicle dynamic and economic performance, etc. In order to designing optimal gearshift strategies for conventional passenger vehicles equipped with stepped automatic transmission, in this paper, the vehicle power demand was defined under different environment, different driving intention and different vehicle operating conditions. Dynamic programming (DP) method is used to solve the optimal static gearshift decision sequence based on the simplified model of powertrain system. The drivability is respected by imposing an inequality constraint on the power reserve limit and the fuel economy is the objective function. Considering the change of vehicle additional load and road slope, the gearshift strategy based on power reserve is proposed.
Technical Paper

Constant Speed Control Method of Hydraulic Retarder Based on Fuzzy PID

2017-03-28
2017-01-1113
Hydraulic retarders have been widely used in heavy-duty vehicles because of its advantages such as large braking torque and long operating hours. They can be used instead of service brakes in non-emergency braking conditions and can also reduce frequency and time of driver’s actions in braking process, thereby minimizing heat-related problems. In order to accurately produce braking torque needed for the vehicle in time by using hydraulic retarder, which enable the vehicle to travel stably and safely during downhill driving, aiming at the constant-speed function of hydraulic retarder, the research of constant-speed control method is conducted in this paper. The structure and working principle of hydraulic retarder is introduced and the dynamic characteristic is analyzed. And the theoretical model of vehicle and hydraulic retarder are established based on dynamic analysis of the vehicle downhill driving.
Technical Paper

Hydraulic Character Modeling and Vehicle Stability Control Algorithm for EHB System of Passenger Car

2016-04-05
2016-01-0454
As a new braking system, EHB can significantly improve the braking performance and vehicle handling and stability. In this paper the structure of high-speed on-off valve and the valve core principle are discussed, the paper also analysis the response of the valve core under different modulation frequency, duty cycle and the change of wheel cylinder pressure. Set a proper modulation frequency to make sure that electromagnetic valve can be worked in a greater linear range.
X