Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

2024-09-12
Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. The goal of this two-day course is to introduce engineers and managers to the basic principles of cooling airflow systems for commercial and off-road vehicles.
Technical Paper

Software-supported Processes for Aerodynamic Homologation of Vehicles

2024-07-02
2024-01-3004
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

The influence of design operating conditions on engine coolant pump absorption in real driving scenarios.

2024-06-12
2024-37-0015
Reducing CO2 emissions in on-the-road transport is important to limit global warming and follow a green transition towards net zero Carbon by 2050. In a long-term scenario, electrification will be the future of transportation. However, in the mid-term, the priority should be given more strongly to other technological alternatives (e.g., decarbonization of the electrical energy and battery recharging time). In the short- to mid-term, the technological and environmental reinforcement of ICEs could participate in the effort of decarbonization, also matching the need to reduce harmful pollutant emissions, mainly during traveling in urban areas. Engine thermal management represents a viable solution considering its potential benefits and limited implementation costs compared to other technologies. A variable flow coolant pump actuated independently from the crankshaft represents the critical component of a thermal management system.
Technical Paper

On Improving CLEAN-SC Maps in The Wind Tunnel

2024-06-12
2024-01-2936
When travelling in an open-jet wind tunnel, the path of an acoustic wave is affected by the flow causing a shift of source positions in acoustical maps of phased arrays outside the flow. The well-known approach of Amiet attempts to correct for this effect by computing travel times between microphones and map points based on the assumption that the boundary layer of the flow, the so-called shear-layer, is infinitely thin and refracts the acoustical ray in a conceptually analogy to optics. However, in reality, the turbulent nature of both the not-so thin shear-layer and the acoustic emission process itself causes an additional smearing of sources in acoustic maps, which in turn causes deconvolution methods based on these maps - the most prominent example being CLEAN-SC - to produce certain ring effects, so-called halos, around sources.
Technical Paper

A Finite-Element-Simulation Workflow to Investigate the Aero- and Vibro-Acoustic Signature of an Enclosed Centrifugal Fan

2024-06-12
2024-01-2940
Centrifugal fans are applied in many industrial and civil applications, such as manufacturing processes and building HVAC systems. They can also be found in automotive applications. Noise-reduction mea- sures for centrifugal fans are often challenging to establish, as acous- tic performance may be considered a tertiary purchase criterion after energetic efficiency and price. Nonetheless, their versatile application raises the demand for noise control. In a low-Mach-number centrifugal fan, acoustic waves are predominantly excited by aerodynamic fluctu- ations in the flow field and transmit to the exterior via the housing and duct walls. The scientific literature documents numerous mech- anisms that cause flow-induced sound generation, even though only some are considered well-understood. Numerical simulation methods are widely used to gather spatially high-resolved insights into physical fields.
Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Technical Paper

Model-Based Algorithm for Water Management Diagnosis and Control for PEMFC Systems for Motive Applications

2024-06-12
2024-37-0004
Water management in PEMFC power generation systems is a key point to guarantee optimal performances and durability. It is known that a poor water management has a direct impact on PEMFC voltage, both in drying and flooding conditions: furthermore, water management entails phenomena from micro-scale, i.e., formation and water transport within membrane, to meso-scale, i.e., water capillary transport inside the GDL, up to the macro-scale, i.e., water droplet formation and removal from the GFC. Water transport mechanisms through the membrane are well known in literature, but typically a high computational burden is requested for their proper simulation. To deal with this issue, the authors have developed an analytical model for the water membrane content simulation as function of stack temperature and current density, for fast on-board monitoring and control purposes, with good fit with literature data.
Technical Paper

Acoustic VS reliability. Case study of automotive components undergoing vibration endurance tests

2024-06-12
2024-01-2948
During design development phases, automotive components undergo a strict validation process aiming to demonstrate requested levels of performance and durability. In some cases, specific developments encounter a major blocking point : decoupling systems responsible for optimal acoustic performances. On the one hand, damping rubbers need to be soft to comply with noise, vibration & harshness criteria. However, softness would provoke such high amplitudes during vibration endurance tests that components would suffer from failures. On the other hand, stiffer rubbers, designed for durability purposes, would fail to meet noise compliance. The rubber design development goes through a double-faced dilemma : design with acceptable trade-off between NVH and durability, and efficient ways to develop compliant designs. This paper illustrates two case studies where different methodologies are applied to validate decoupling systems from both acoustic and reliability perspectives.
Technical Paper

Structural Dynamic Modelling of HVAC Systems

2024-06-12
2024-01-2923
The structure-, fluid- and air-borne excitation generated by HVAC compressors can lead to annoying noise and low frequency vibrations in the passenger compartment. These noises and vibrations are of great interest in order to maintain high passenger comfort of EV vehicles. The main objective of this paper is to develop a numerical model of the HVAC system and to simulate the structure-borne sound transmission from the compressor through the HVAC hoses to the vehicle in a frequency range up to 1 kHz. An existing automotive HVAC system was fully replicated in the laboratory. Vibration levels were measured on the compressor and on the car body side of the hoses under different operational conditions. Additional measurements were carried out using external excitation of the compressor in order to distinguish between structure- and fluid-borne transmission. The hoses were experimentally characterised with regard to their structure-borne sound transmission characteristics.
Technical Paper

Static Aeroelastic Analysis and Study of Control Effectiveness of a Typical Reusable Launch Vehicle

2024-06-01
2024-26-0447
Launch vehicles are vulnerable to aeroelastic effects due to their lightweight, flexible, and higher aerodynamic loads. Aeroelasticity research has therefore become an inevitable concern in the development of the Reusable Launch Vehicle (RLV). RLV is the space analogy of an aircraft, a unanimous solution to achieve more affordable access to space. The lightweight control surface of the RLV signifies the relevance of the study on control effectiveness. It is the capability of a control surface such as an elevon or rudder to produce aerodynamic forces and moments to change the launch vehicle's orientation and maneuver it along the intended flight path. The static aeroelastic problem determines the efficiency of control, aircraft trim behaviour, static stability, and maneuvering quality in steady flight conditions. In this study, static aeroelastic analysis was performed on a typical RLV using MSC/NASTRAN inbuilt aerodynamics.
X