Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Experimental Investigation of Low-Frequency Flow Phenomena on the Vehicle Underbody Using Particle Image Velocimetry

2024-04-09
2024-01-2546
The increasing importance of minimizing drag and the absence of an exhaust system result in battery electric vehicles (BEVs) commonly having a very streamlined underbody. Although this shape of underbody is typically characterized by a low acoustic interference potential, significant flow resonance can be observed for certain vehicle configurations and frequencies below 30 Hz. Since the interior of the vehicle can be excited as a Helmholtz resonator, these low-frequency fluctuations result in reduced comfort for the passengers. As preliminary studies have shown, the flow around the front wheel spoilers significantly influences this flow phenomenon. Flow separation occurs at the front-wheel spoilers and at the front wheels. This leads to the generation of vortices which are growing significantly while being transported downstream with the flow. Even small geometric changes to add-on components on the underbody significantly influence both aerodynamics and aeroacoustics.
Technical Paper

Aeroacoustic Vehicle Development Method Considering Realistic Wind Conditions

2023-05-08
2023-01-1123
The aeroacoustic development of vehicles is still mainly carried out in wind tunnels under steady flow conditions, although the real situation is different. However, as discussed in several earlier publications, a vehicle experiences unsteady, turbulent flow on road, which results for example from natural wind, wakes of other vehicles, or obstacles at the roadside in combination with side wind. The resulting temporal variations of the wind noise inside the cabin affect the passengers’ comfort and safety through fatigue. To be able to also consider the unsteady aeroacoustics in the vehicle development process, a comprehensive method has been developed that is presented in full for the first time in this paper. The on-road situation is simulated in a realistic and reproducible manner in the full-scale wind tunnel of the University of Stuttgart by means of an active turbulence generator, developed by FKFS.
Technical Paper

Influence of Wheel Wake on Vehicle Aerodynamics: An Eddy-Resolving Simulation Study

2023-04-11
2023-01-0842
A computational study of the vehicle aerodynamics influenced by the wake of the rotating wheel taking into account a detailed rim geometry is presently performed. The car configuration corresponds to a full-scale (1:1) notchback configuration of the well-known ‘DrivAer’ vehicle model, Heft et al. [1]. The objective of the present work is to investigate the performance of some popular turbulence models in conjunction with different methods for handling the wheel rotation – rotating wall velocity, ‘multiple reference frame’ and ‘sliding grid algorithm’. The specific focus hereby is on a near-wall RANS eddy-viscosity model based on elliptic-relaxation, sensitized to resolve fluctuating turbulence by introducing a specifically modeled production term in the scale-supplying equation, motivated by the Scale-Adaptive Simulation approach (SAS, [2]), proposed by Krumbein et al. [3].
Journal Article

The Effect of Unsteady Incident Flow on Drag Measurements for Different Vehicle Geometries in an Open Jet Wind Tunnel

2022-03-29
2022-01-0894
Automotive engineers use the wind tunnel to improve a vehicle’s aerodynamic properties on the road. However, a car driving on the road does not experience the steady-state, uniform flow characteristic of the wind tunnel. Wind, terrain and traffic all cause the flow experienced by the vehicle to be highly transient. Therefore, it is imperative to understand the effects of forces acting on the vehicle resulting from unsteady flow. To this end, the FKFS swing® installed in the University of Stuttgart’s model scale wind tunnel was used to create 36 different incident flow signals with time-resolved yaw angles. The cD values of five different 25% vehicle models, each with a notchback and a squareback configuration, were measured while under the influence of the aforementioned signals. The vehicle models were chosen to ensure a variety of different geometries, but at the same time also to enable isolated comparison of specific geometric properties.
Journal Article

Simulation of Transient On-Road Conditions in a Closed Test Section Wind Tunnel Using a Wing System with Active Flaps

2020-04-14
2020-01-0688
Typical automotive research in wind tunnels is conducted under idealized, stationary, low turbulence flow conditions. This does not necessarily reflect the actual situation in traffic. Thus, there is a considerable interest to simulate the actual flow conditions. Because of this, a system for the simulation of the turbulence intensity I, the integral linear scale L and the transient angle of incidence β measured in full-scale tests in the inflow of a test vehicle was developed and installed in a closed-loop, closed test section wind tunnel. The system consists of four airfoils with movable flaps and is installed in the beginning of the test section. Time-series of the flow velocity vector are measured in the empty test section to analyze the system’s envelope in terms of the turbulence intensity and the integral length scales.
Journal Article

Investigation of Transient Aerodynamic Effects on Public Roads in Comparison to Individual Driving Situations on a Test Site

2020-04-14
2020-01-0670
Natural wind, roadside obstacles, terrain roughness, and traffic influence the incident flow of a vehicle driven on public roads. These transient on-road conditions differ from the idealized statistical steady-state flow environment utilized in CFD simulations and wind tunnel experiments. To understand these transient on-road conditions better, measurements were performed on German public highways and on a test site. A compact car was equipped with a measurement system that is capable of determining the transient airflow around the vehicle and the vehicle’s actual driving state. This vehicle was driven several times on a predefined 200 km long route to investigate different traffic densities on public highways in southern Germany. During the tests the transient incident flow and pressure distribution on the vehicle surface were measured.
Journal Article

Experimental Investigation of Automotive Vehicle Transient Aerodynamics with a Reduced-Scale Moving-Model Crosswind Facility

2020-04-14
2020-01-0671
Automotive vehicles operate in complex, transient aerodynamic conditions that can potentially influence their operational efficiency, performance and safety. A moving-model facility combined with a wind-tunnel is an experimental methodology that can be utilized to model some of these transient aerodynamic conditions. This experimental methodology is an alternative to wind-tunnel experiments with additional crosswind generators or actively yawing models, and has the added benefit of modelling the correct relative motion between the vehicle and the ground/infrastructure. Experiments using a VW Golf 7 were performed with a 1:10 scale model at the moving-model facility at DLR, Göttingen and a full-scale, operational vehicle at the BMW Ascheim side-wind facility.
Journal Article

Advances in Experimental Vehicle Soiling Tests

2020-04-14
2020-01-0681
The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
Journal Article

New Motion Cueing Algorithm for Improved Evaluation of Vehicle Dynamics on a Driving Simulator

2017-03-28
2017-01-1566
In recent years, driving simulators have become a valuable tool in the automotive design and testing process. Yet, in the field of vehicle dynamics, most decisions are still based on test drives in real cars. One reason for this situation can be found in the fact that many driving simulators do not allow the driver to evaluate the handling qualities of a simulated vehicle. In a driving simulator, the motion cueing algorithm tries to represent the vehicle motion within the constrained motion envelope of the motion platform. By nature, this process leads to so called false cues where the motion of the platform is not in phase or moving in a different direction with respect to the vehicle motion. In a driving simulator with classical filter-based motion cueing, false cues make it considerably more difficult for the driver to rate vehicle dynamics.
Technical Paper

Cooling Drag of Ground Vehicles and Its Interaction with Ground Simulation

2006-04-03
2006-01-0339
Cooling drag is the increase in the total drag due to the internal flow in the cooling system. Because of the high flow resistance in the heat exchanger the momentum of the fluid needed for engine cooling usually is dissipated nearly completely. The resulting drag penalty can be approximated by the so called ram drag. For ground vehicles the cooling drag is typically lower than this approximation due to positive interference of the cooling flow with the general flow around the vehicle. Different mechanisms for the positive interference have been described in the literature. Inlet interference as well as outlet interference can result in significant reduction of the share of the cooling drag. Positive outlet interference is obtained, when the remaining kinetic energy of the cooling flow contributes significant thrust to the overall momentum balance.
Technical Paper

Induced Drag of Ground Vehicles and Its Interaction with Ground Simulation

2005-04-11
2005-01-0872
For the aerodynamic development of an aircraft the induced drag is an important quantity and it has a significant impact on the design of the wing. The induced drag corresponds to the power requirement of the wing to generate the necessary lift. In many cases this is the dominant source of drag for aircraft. In ground vehicle aerodynamics the concept of induced drag up to now has attracted much less attention. This is partly due to the fact, that vehicle aerodynamicists usually optimize the vehicles to generate little or no lift. The second reason is that it is much more difficult for a ground vehicle to separate the total drag into the different contributions. During wind tunnel tests of vehicles with and without ground simulation some astonishing results were found, especially when comparing results for different rear end shapes.
Technical Paper

Crosswind Behavior in the Driver's Perspective

2002-03-04
2002-01-0086
Investigating the crosswind behavior of passenger cars is one main research subject at the Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS), an institute of the University of Stuttgart. Faced with the vehicle dynamics during stochastic crosswind, this paper is concerned with the evaluation of the crosswind behavior as experienced by the driver. Most of the evaluation criteria of crosswind are currently based on the vehicle reactions only and exclude the driver's actions. A comparison of the crosswind behavior of two vehicles at the FKFS showed a non-uniform - in some cases even contrary - evaluation when applying these criteria. This paper introduces a new approach to considering the vehicle's crosswind behavior which includes the driver's reactions. The fundamental issue of this new approach is to derive the driver's evaluation from their steering inputs when compensating for the crosswind excitation. In other words: The driver is used as a sensor.
X