Refine Your Search

Topic

Search Results

Standard

Standard Sheet Steel Thickness and Tolerances

2024-03-04
CURRENT
J1058_202403
This SAE Recommended Practice provides an orderly series for designating the thickness of unocated and coated hot-rolled and cold-rolled sheet and strip. This document also provides methods for specifying thickness tolerances.
Standard

Potential Standard Steels

2023-06-06
CURRENT
J1081_202306
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS1 followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
Standard

Anodized Aluminum Automotive Parts

2023-05-22
CURRENT
J399_202305
Automotive parts can be fabricated from either coiled sheet, flat sheet or extruded shapes. Alloy selection is governed by finish requirements, forming characteristics, and mechanical properties. Bright anodizing alloys 5657 and 52521 sheet provide a high luster and are preferred for trim which can be formed from an intermediate temper, such as H25. Bright anodizing alloy 5457 is used for parts which require high elongation and a fully annealed ("0") temper. Alloy 6463 is a medium strength bright anodizing extrusion alloy; Alloy X7016 is a high strength bright anodizing extrusion alloy primarily suited for bumper applications. To satisfy anti-glare requirements for certain trim applications, sheet alloy 5205 and extrusion alloy 6063 are capable of providing the desired low-gloss anodized finish.
Standard

Product Analysis - Permissible Variations from Specified Chemical Analysis of a Heat or Cast of Steel

2021-07-15
CURRENT
J409_202107
Supplementary to the heat or cast analysis, a product analysis may be made on steel in the semifinished or finished form. For definitions and methods of sampling steel for product chemical analysis, refer to SAE J408. A product analysis is a chemical analysis of the semifinished or finished steel to determine conformance to the specification requirements. The range of the specified chemical composition is normally expanded to take into account deviations associated with analytical reproducibility and the heterogeneity of the steel. Individual determinations may vary from the specified heat or cast analysis ranges or limits to the extent shown in Tables 1 through 5. The several determinations of any element in a heat or cast may not vary both above and below the specified range except for lead. Tables 1 through 5 provide permissible limits for various steel forms and composition types.
Standard

Solders

2018-08-24
CURRENT
J473_201808
The choice of the type and grade of solder for any specific purpose will depend on the materials to be joined and the method of applying. Those with higher amounts of tin usually wet and bond more readily and have a narrower semi-molten range than lower amounts of tin. For strictly economic reasons, it is recommended that the grade of solder metal be selected that contains least amount of tin required to give suitable flowing and adhesive qualities for application. All the lead-tin solders, with or without antimony, are usually suitable for joining steel and copper base alloys. For galvanized steel or zinc, only Class A solders should be used. Class B solders, containing antimony usually as a substitute for some of the tin or to increase strength and hardness of the filler metal, form intermetallic antimony-zinc compounds, causing the joint to become embrittled. Lead-tin solders are not recommended for joining aluminum, magnesium, or stainless steel.
Standard

Wrought Aluminum Applications Guidelines

2018-01-10
CURRENT
J1434_201801
This report approaches the material selection process from the designer's viewpoint. Information is presented in a format designed to guide the user through a series of decision-making steps. "Applications criteria" along with engineering and manufacturing data are emphasized to enable the merits of aluminum for specific applications to be evaluated and the appropriate alloys and tempers to be chosen.
Standard

Microscopic Determination of Inclusions in Steels

2018-01-10
CURRENT
J422_201801
This recommended microscopic practice for evaluating the inclusion content in steel has been developed as a practical method of quantitatively determining the degree of cleanliness of steel. This method has been established as a reasonable control for steel mill operations and acceptance for production manufacturing. It has been widely accepted for carbon and alloy steel bars, billets, and slabs. Exceptions are resulfurized grades which are outside the limits of these photomicrographs and the high carbon bearing quality steels which are generally classified using ASTM E 45-60T, Method A, Jernkontoret Charts.
Standard

Electromagnetic Testing by Eddy Current Methods

2018-01-09
CURRENT
J425_201801
The purpose of this SAE Information Report is to provide general information relative to the nature and use of eddy current techniques for nondestructive testing. The document is not intended to provide detailed technical information but to serve as an introduction to the principles and capabilities of eddy current testing, and as a guide to more extensive references listed in Section 2.
Standard

Alloy and Temper Designation Systems for Aluminum

2018-01-09
CURRENT
J993_201801
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

Welding, Brazing, and Soldering - Materials and Practices

2018-01-09
CURRENT
J1147_201801
The Joint AWS/SAE Committee on Automotive Welding was organized on January 16, 1974, for the primary purpose of facilitating the development and publication of various documents related to the selection, specification, testing, and use of welding materials and practices, particularly for the automotive and related industries. A secondary purpose is the dissemination of technical information.
Standard

Automotive Gray Iron Castings

2018-01-09
CURRENT
J431_201801
This SAE Standard covers the hardness, tensile strength, and microstructure and special requirements of gray iron sand molded castings used in the automotive and allied industries. Specific requirements are provided for hardness of castings. Test bar tensile strength/Brinell hardness (t/h) ratio requirements are provided to establish a consistent tensile strength-hardness relationship for each grade to facilitate prediction and control of tensile strength in castings. Provision is made for specification of special additional requirements of gray iron automotive castings where needed for particular applications and service conditions. NOTE—This document was revised in 1993 to provide grade specific t/h control. In 1999 the document was revised to make SI metric units primary.
Standard

Sintered Tool Materials

2017-12-20
CURRENT
J1072_201712
This SAE Recommended Practice covers the identification and classification of ceramic, sintered carbide, and other cermet tool products. Its purpose is to provide a standard method for designating the characteristics and properties of sintered tool materials.
Standard

Magnesium Alloys

2017-12-20
CURRENT
J464_201712
This report on magnesium alloys covers those alloys which have been more commonly used in the United States for automotive, aircraft, and missile applications. Basic information on nomenclature and temper designation is given. Design data and many characteristics covered by a purchase specification are not included.
Standard

Use of Terms Yield Strength and Yield Point

2017-10-10
CURRENT
J450_201710
The purpose of this SAE Recommended Practice is to describe the terms yield strength and yield point. Included are definitions for both terms and recommendations for their use and application.
Standard

Categorization and Properties of Low-Carbon Automotive Sheet Steels

2015-04-28
CURRENT
J2329_201504
This SAE Recommended Practice establishes mechanical property ranges for low-carbon automotive hot-rolled sheet, cold-rolled sheet, and metallic-coated sheet steels. It also contains information that explains the different nomenclature used with these steels.
Standard

Standard Sheet Steel Thickness and Tolerances

2015-04-28
HISTORICAL
J1058_201504
This SAE Recommended Practice provides an orderly series for designating the thickness of unocated and coated hot-rolled and cold-rolled sheet and strip. This document also provides methods for specifying thickness tolerances.
Standard

Chemical Compositions of SAE Alloy Steels

2009-01-27
CURRENT
J404_200901
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Division 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
Standard

Former SAE Standard and Former SAE Ex-Steels

2008-12-02
HISTORICAL
J1249_200812
This SAE Information Report provides a list of those SAE steels which, because of decreased usage, have been deleted from the standard SAE Handbook listings. Included are alloy steels from SAE J778 deleted since 1936, carbon steels from SAE J118 deleted since 1952, and all EX-steels deleted from SAE J1081. Information concerning SAE steels prior to these dates may be obtained from the SAE office on request. With the issuance of this report, SAE J778, Formerly Standard SAE Alloy Steels, and SAE J118, Formerly Standard SAE Carbon Steels, will be retired since they are now combined in SAE J1249. In the future, new assignments to SAE J1081, Chemical Compositions of SAE Experimental Steels, will be given “PS” (Potential Standard) numbers rather than “EX” numbers. The steels listed in Tables 1 and 2 are no longer considered as standard steels. Producers should be contacted concerning availability.
X