Refine Your Search

Topic

Search Results

Technical Paper

Highway Exhaust Emissions of a Natural Gas-Diesel Dual-Fuel Heavy-Duty Truck

2024-04-09
2024-01-2120
Diesel-fueled heavy-duty vehicles (HDVs) can be retrofitted with conversion kits to operate as dual-fuel vehicles in which partial diesel usage is offset by a gaseous fuel such as compressed natural gas (CNG). The main purpose of installing such a conversion kit is to reduce the operating cost of HDVs. Additionally, replacing diesel partially with a low-carbon fuel such as CNG can potentially lead to lower carbon dioxide (CO2) emissions in the tail-pipe. The main issue of CNG-diesel dual-fuel vehicles is the methane (CH4, the primary component of CNG) slip. CH4 is difficult to oxidize in the exhaust after-treatment (EAT) system and its slip may offset the advantage of lower CO2 emissions of natural gas combustion as CH4 is a strong greenhouse gas (GHG). The objective of this study is to compare the emissions of an HDV with a CNG conversion kit operating in diesel and dual-fuel mode during highway operation.
Technical Paper

Performance of Spark Current Boost System on a Production Engine under Lean-Burn Conditions

2024-04-09
2024-01-2106
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA.
Technical Paper

Investigation of Fuel Injection Pressure Impact on Dimethyl Ether Combustion

2023-10-31
2023-01-1644
Compression ignition engines used in heavy-duty applications are typically powered by diesel fuel. The high energy density and feedstock abundance provide a continuing source for the immense energy demand. However, the heavy-duty transportation sector is challenged with lowering greenhouse gas and combustion by-product emissions, including carbon dioxide, nitrogen oxides, and particulate matter. The continuing development of engine management and combustion strategies has proven the ability to meet current regulations, particularly with higher fuel injection pressure. Nonetheless, a transition from diesel to a renewable alternative fuel source will play a significant role in reducing greenhouse gases while maintaining the convenience and energy density inherent in liquid fuels. Dimethyl ether is a versatile fuel that possesses combustion properties suitable for compression ignition engines and physical properties helpful for clean combustion.
Technical Paper

Investigation of Dimethyl Ether Dual-Fuel Combustion Using Propane and Ethanol as Premixed Fuel

2023-09-29
2023-32-0018
The combustion and emission characteristics of dual-fuel combustion were investigated using dimethyl ether direct injection and premixed low-carbon fuels. Dimethyl ether was used as the direct injection fuel for its high reactivity and low propensity to form particulate matter. Ethanol and Propane, two fuels of low reactivity, were premixed in the intake port. An injection timing sweep of varying premixed energy shares and engine loads was tested. Combustion analysis was conducted based on in-cylinder pressure measurements while detailed speciation of engine-out emissions was performed via FTIR. The proper injection advance and premixed energy share can realize low NOx and high combustion efficiency. Ethanol showed stronger impact to DME ignition delay as compared with propane.
Technical Paper

Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions

2023-04-11
2023-01-0327
Compression ignition internal combustion engines provide unmatched power density levels, making them suitable for numerous applications including heavy-duty freight trucks, marine shipping, and off-road construction vehicles. Fossil-derived diesel fuel has dominated the energy source for CI engines over the last century. To mitigate the dependency on fossil fuels and lessen anthropogenic carbon released into the atmosphere within the transportation sector, it is critical to establish a fuel source which is produced from renewable energy sources, all the while matching the high-power density demands of various applications. Dimethyl ether (DME) has been used in non-combustion applications for several decades and is an attractive fuel for CI engines because of its high reactivity, superior volatility to diesel, and low soot tendency. A range of feedstock sources can produce DME via the catalysis of syngas.
Technical Paper

Impact of Plasma Stretch on Spark Energy Release Rate under Flow Conditions

2022-03-29
2022-01-0438
Performance of the ignition system becomes more important than ever, because of the extensively used EGR in modern spark-ignition engines. Future lean burn SI and SACI combustion modes demand even stronger ignition capability for robust ignition control. For spark-based ignition systems, extensive research has been carried out to investigate the discharge characteristics of the ignition process, including discharge current amplitude, discharge duration, spark energy, and plasma stretching. The correlation between the spark stretch and the discharge energy, as well as the impact of discharge current level on this correlation, are important with respect to both ignition performance, and ignition system design. In this paper, a constant volume combustion chamber is applied to study the impact of plasma stretch on the spark energy release process with cross-flow speed from 0 m/s up to 70 m/s.
Technical Paper

A Study of Combustion Inefficiencies in SI Engines Powered by Alcohol and Ether Fuels Using Detailed Emission Speciation

2022-03-29
2022-01-0520
Advanced combustion engines, as power sources, dominate all aspects of the transportation sector. Stringent emission and fuel efficiency standards have promoted the research interest in advanced combustion strategies and alternative fuels. Owing to the comparable energy density to the existing fossil fuels and renewable production, alcohol and ether fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. Furthermore, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines. However, lean-burn or EGR dilution can introduce combustion inefficiencies in the form of excessive hydrocarbon, carbonyl species and carbon monoxide emissions.
Technical Paper

Combustion Characterization of DME-Fueled Dual Fuel Combustion with Premixed Ethanol

2022-03-29
2022-01-0461
The heterogeneous nature of direct injection (DI) combustion yields high combustion efficiencies but harmful emissions through the formation of high nitrogen oxide (NOx) and smoke emissions. In response, extensive empirical and computational research has focused on balancing the NOx-smoke trade-off to limit diesel DI combustion emissions. Dimethyl ether (DME) fuel is applicable in DI compression ignition engines and its high fuel oxygen produces near-smoke-free emissions. Moreover, the addition of a premixed fuel can improve mixture homogeneity and minimize the DI fuel energy demands lessening injection durations. For this technique, a low reactivity fuel such as ethanol is essential to avoid early autoignition in high compression ratio engines. In this work, empirical experiments of dual fuel operation have been conducted using premixed ethanol with high-pressure direct injection DME.
Technical Paper

A Study on the Use of Intake Flow Path Modification to Reduce Methane Slip of a Natural Gas-Diesel Dual-Fuel Engine

2022-03-29
2022-01-0467
Use of natural gas-diesel dual-fuel (NDDF) combustion in compression ignition engines is a method of reducing the net greenhouse gas (GHG) and particulate matter (PM) emissions of these engines. Compressed natural gas (NG) is injected into the intake manifold of the engine and the air-NG mixture is ignited by a direct injection of diesel in the cylinder. One of the main challenges with NDDF combustion is the methane (primary component of NG) slip at low and medium loads, which reduces the engine efficiency and offsets the advantage of lower carbon dioxide emissions of the NG combustion. In order to address this issue, an intake manifold insert is devised with the objective to alter the intake flow profile into the engine and ultimately reduce the methane slip. This is a novel strategy for an NDDF engine since modifying the in-cylinder flow profile can intensify the mixing between diesel and air-NG mixture in order to improve the NG utilization in the cylinder.
Technical Paper

A Comparative Study on the Ignition Mechanism of Multi-site Ignition and Continuous Discharge Strategy

2021-09-21
2021-01-1162
Advanced combustion engines dominate all automotive applications. Future high efficiency clean combustion engines can contribute significantly to sustainable transportation. Effective ignition strategies are studied to enable lean and diluted combustion under considerably high-density mixture and strong turbulences, for improving the efficiency and emissions of future combustion engines. Continuous discharge and multi-site ignition strategies have been proved to be effective to stabilize the combustion process under lean and EGR diluted conditions. Continuous discharge strategy uses a traditional sparkplug with a single spark gap and multiple ignition coil packs. The ignition coil packs operate under a specific time offset to realize a continuous discharge process with a prolonged discharge duration. Multi-site ignition strategy also uses multiple ignition coil packs.
Technical Paper

Chemical Reactivity Control of DME/Ethanol Dual Fuel Combustion

2021-09-21
2021-01-1176
The use of renewable fuels in place of conventional hydrocarbon fuels can minimize the carbon footprint of internal combustion engines. DME has been treated as a suitable surrogate to diesel fuel because of its high reactivity and soot-less combustion characteristics. The lower energy density of DME fuel demands a higher fuel supply rate to match the engine loads compared to diesel, which was achieved through prolonged injection duration and larger nozzle holes. When used as a pilot fuel to control the combustion behavior in a dual-fuel application, the fuel energy delivery rate becomes less critical allowing the use of a standard diesel common-rail injector for DME direct injection. In this work, the combustion of DME-Ethanol dual-fuel reactivity-controlled compression ignition was experimentally investigated.
Technical Paper

An Experimental Study on NOx Emissions of a Heavy-Duty Diesel Engine during Cold Start and Idling

2021-04-06
2021-01-0535
In North America, heavy-duty diesel engines for on-road use have to meet strict regulations for their emissions of nitric oxide and nitrogen dioxide (cumulatively referred to as ‘NOx’) besides other criteria pollutants. Over the next decade, regulations for NOx emissions are expected to becoming more stringent in North America. One of the major technical barriers for achieving in-use NOx emissions commensurate with the levels determined from in-laboratory test procedures required by regulations is controlling NOx emissions during cold start and engine idling. Since the exhaust gas temperature can be low during these conditions, the effectiveness of the exhaust after-treatment (EAT) system may be reduced. Under colder climate conditions like in Canada, the impact may be even more significant.
Technical Paper

An Investigation of Emission Species over a Diesel Oxidation Catalyst Using Flow Reversal Strategy

2021-04-06
2021-01-0606
With the increasing demand of emission reductions from the automotive industry, advanced after-treatment strategies have been investigated to overcome the challenges associated with meeting increasingly stringent emission regulations. Ongoing investigations on low temperature combustion (LTC) strategies are being researched to meet future emission regulations, however, the lowered exhaust temperature presents an even greater issue for exhaust after-treatment due to the change in combustion modes. Catalyst temperature is critical for the catalytic ability to maintain effective conversion efficiency of regulated emissions. The use of periodic flow reversal has shown benefits of maintaining catalyst temperature by alternating the exhaust flow direction through the catalytic converter, reducing the catalyst sensitivity to inlet gas temperature fluctuations.
Technical Paper

Numerical Investigation on NO to NO2 Conversion in a Low-Temperature Combustion CI Engine

2021-04-06
2021-01-0506
Low temperature combustion (LTC) has been proved to overcome the trade-off between NOx and soot emissions in direct injection compression ignition engines. However, the lowered NOx emissions are accompanied by high hydrocarbon and CO emissions. Moreover, the NOx emissions under LTC has much higher NO2 concentrations compared with traditional high temperature combustion conditions. Experimental investigations have been carried out to show the hydrocarbon impact on NOx emissions and NO-NO2 conversion under various engine operation conditions, but the mechanism is less understood. The article includes numerical studies of the impact of hydrocarbons in the in-cylinder conversion of NO to NO2 during low temperature conditions in a compression ignition engine. In the present work, a stochastic reactor model with detailed chemical kinetics is utilized to investigate the reaction pathways during the NOx reduction and NO2 conversion processes.
Technical Paper

An Investigation on the Regeneration of Lean NOX Trap Using Dimethyl Ether

2020-04-14
2020-01-1354
The ever-stringent emission regulations are major challenges for the diesel fueled engines in automotive industry. The applications of advanced after-treatment technologies as well as alternative fuels [1] are considered as promising methodology to reduce exhaust emission from compression ignition (CI) engines. Using dimethyl ether (DME) as an alternative fuel has been extensively studied by many researchers and automotive manufactures since DME has demonstrated enormous potential in terms of emission reduction, such as low CO emission, and soot and sulfur free. However, the effect of employing DME in a lean NOX trap (LNT) based after-treatment system has not been fully addressed yet. In this work, investigations of the long breathing LNT system using DME as a reductant were performed on a heated after-treatment flow bench with simulated engine exhaust condition.
Technical Paper

An Experimental Study on the Effect of Exhaust Gas Recirculation on a Natural Gas-Diesel Dual-Fuel Engine

2020-04-14
2020-01-0310
Natural gas (NG)-diesel dual-fuel combustion can be a suitable solution to reduce the overall CO2 emissions of heavy-duty vehicles using diesel engines. One configuration of such a dual-fuel engine can be port injection of NG to form a combustible air-NG mixture in the cylinder. This mixture is then ignited by a direct injection of diesel. Other potential advantages of such an engine include the flexibility of switching back to diesel-only mode, reduced hardware development costs and lower soot emissions. However, the trade-off is lower brake thermal efficiency (BTE) and higher hydrocarbon emissions, especially methane, at low load and/or high engine speed conditions. Advancing the diesel injection timing tends to improve the BTE but may cause the NOx emissions to increase.
Technical Paper

Combustion Characterization of Neat n-Butanol in an SI Engine

2020-04-14
2020-01-0334
Increasingly stringent emission standards have promoted the interest in alternate fuel sources. Because of the comparable energy density to the existing fossil fuels and renewable production, alcohol fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. In this research, the combustion characteristics of neat n-butanol are analyzed under spark ignition operation using a single cylinder SI engine. The fuel is injected into the intake manifold using a port-fuel injector. Two modes of charge dilution were used in this investigation to test the limits of stable engine operation, namely lean burn using excess fresh air and exhaust gas recirculation (EGR). The in-cylinder pressure measurement and subsequently, heat release analysis are used to investigate the combustion characteristics of the fuel under low load SI engine operation.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
Technical Paper

Experimental Study on the Characteristics of Short Circuits and Restrikes of Spark Channels

2020-04-14
2020-01-1123
Ignition performance is critical for the implementation of diluted combustion for spark-ignition engines. The short circuit and restrike phenomena can influence the initial ignition volume and discharge duration which are important for the stable ignition processes. In this study, the short circuits and restrikes of spark channels are studied with various flow velocities, spark plug gaps and discharge energies. The development of the spark channels is captured by using the direct imaging technique with a CMOS camera equipped with an image intensifier. A multi-coil ignition system is designed to enable flexible control of discharge energies. The results show that the spark plug gap size is a critical parameter to suppress the phenomena of short circuits and restrikes. With the enlargement of spark plug gap, the maximum and average lengths of the spark channel effectively increase.
Technical Paper

Preliminary Testing of n-Butanol HCCI on High Compression Ratio Diesel Engines

2019-04-02
2019-01-0577
The control of combustion phasing in homogeneous charge compression ignition (HCCI) combustion is investigated with neat n-butanol in this work. HCCI is a commonly researched combustion mode, owing to its improved thermal efficiency over conventional gasoline combustion, as well as its lower nitrogen oxide (NOx) and particulate matter emissions compared to those of diesel combustion. Despite these advantages, HCCI lacks successful widespread implementation with conventional fuels, primarily due to the lack of effective combustion phasing control. In this preliminary study, chemical kinetic simulations are conducted to study the auto-ignition characteristics of n-butanol under varied background pressures, temperatures, and dilution levels using established mechanisms in CHEMKIN software. Increasing the pressure or temperature lead to a shorter ignition delay, whereas increasing the dilution by the application of exhaust gas recirculation (EGR) leads to a longer ignition delay.
X