Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Ethanol/N-Heptane Dual-Fuel Partially Premixed Combustion Analysis through Formaldehyde PLIF

2012-04-16
2012-01-0685
As a result of recent focus on the control of Low Temperature Combustion (LTC) modes, dual-fuel combustion strategies such as Reactivity Controlled Compression Ignition (RCCI) have been developed. Reactivity stratification of the auto-igniting mixture is thought to be responsible for the increase in allowable engine load compared to other LTC combustion modes such as Homogenous Charge Compression Ignition (HCCI). The current study investigates the effect of ethanol intake fuel injection on in-cylinder formaldehyde formation and stratification within an optically accessible engine operated with n-heptane direct injection using optical measurements and zero-dimensional chemical kinetic models. Images obtained by Planar Laser Induced Fluorescence (PLIF) of formaldehyde using the third harmonic of a pulsed Nd:YAG laser indicate an increase in formaldehyde heterogeneity as measured by the fluorescence signal standard deviation.
Technical Paper

Simulation of the Effect of Recirculated Gases on Ignition Delay During Cold Starting of a Direct Injection Diesel Engine

2011-04-12
2011-01-0838
Simulations using CFD and chemical kinetics models have been applied to gain a better understanding of the effect of the recirculated gases on the autoignition process during cold starting of a direct injection diesel engine. The cranking gases recirculated (CGR) contain fuel vapor and partial oxidation products which affect the autoignition process in different ways. Some hydrocarbons (HCs) species enhance the reaction rates and reduce ignition delay. Meanwhile other HCs species and the partial oxidation products of the autoignition process have an opposing effect. The simulation covered a wide range of the hydrocarbons and aldehydes concentrations and their effect on the ignition delay in a 1.2L Ford DIATA 4-cylinders, water cooled, turbocharged and intercooled diesel engine. The simulated opposing effects of HCs and HCHO on the ignition delay are validated by experimental results at room temperature.
Technical Paper

Multi Sensing Fuel Injector for Electronically Controlled Diesel Engines

2011-04-12
2011-01-0936
Internal combustion engine control requires feedback signals to the ECU in order to meet the increasingly stringent emissions standards. Reducing the number of on-board sensors needed for proper engine performance would reduce the cost and complexity of the electronic system. This paper presents a new technique to enable one engine element, the fuel injector, to perform multiple sensing tasks in addition to its primary task of delivering the fuel into the cylinder. The injector is instrumented within an electric circuit to produce a signal indicative of the ionization produced from the combustion process in electronically controlled diesel engines. The output of the multi sensing fuel injector (MSFI) system can be used as a feedback signal to the engine control unit (ECU) for injection timing and diagnostics of the injection and combustion processes.
Technical Paper

Optical and Numerical Investigation of Pre-Injection Reactions and Their Effect on the Starting of a Diesel Engine

2009-04-20
2009-01-0648
Ultraviolet chemiluminescence has been observed in a diesel engine cyclinder during compression, but prior to fuel injection under engine starting conditions. During a portion of the warm-up sequence, the intensity of this emission exhibits a strong correlation to the phasing of the subsequent combustion. Engine exhaust measurements taken from a continuously misfiring, motored engine confirm the generation of formaldehyde (HCHO) in such processes. Fractions of this compound are expected to be recycled as residual to participate in the following combustion cycle. Spectral measurements taken during the compression period prior to fuel injection match the features of Emeleus' cool flame HCHO bands that have been observed during low temperature heat release reactions occurring in lean HCCI combustion. That the signal from the OH* bands is weak implies a buildup of HCHO during compression.
X