Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Investigation of Fuel Influence on Atomization and Spray Propagation Using an Outwardly Opening GDI-Injector

2010-10-25
2010-01-2275
One fundamental subprocess for the utilization of alternative fuels for automotive applications is the in-cylinder mixture formation and therefore the fuel injection, which largely affects the combustion efficiency of internal combustion engines. This study analyzes the influence of the physical properties of various model-fuels on atomization and spray propagation at temperatures and pressures matching the operating conditions of today's gasoline engines. The experiments were carried out using an outwardly opening, piezo-driven gasoline injector. In order to cover a wide range of potential fuels the following liquids were investigated: Alcohols (Ethanol, Butanol and Decanol), alkanes (Iso-Octane, Dodecane and Heptane) and one furane (Tetrahydrofurfuryl Alcohol). The macroscopic spray propagation of the fuels was investigated using shadowgraphy. For complementary spray characterization droplet sizes and velocities were measured using Phase-Doppler Anemometry.
Journal Article

Experimental Investigation of the Interaction of MultipleGDI Injections using Laser Diagnostics

2010-04-12
2010-01-0596
In present GDI engines, multiple injection strategies are often employed for engine cold start mixture formation. In the future, these strategies may also be used to control the combustion process, and to prevent misfiring or high emission levels. While the processes occurring during individual injections of GDI injectors have been investigated by a number of researchers, this paper concentrates on the interactions of multiple injection events. Even though multiple injection strategies are already applied in most GDI engines, the impact of the first injection event on the second injection event has not been analyzed in detail yet. Different optical measurement techniques are used in order to investigate the interaction of the two closely timed injection events, as well as the effect of dwell time and the in-cylinder conditions. The injector investigated is a GDI piezo injector with an outwardly opening needle.
Technical Paper

Quantitative Measurements of Direct-Injection Gasoline Fuel Sprays in Near-Nozzle Region Using Synchrotron X-Ray

2001-03-05
2001-01-1293
A quantitative and time-resolved technique has been developed to probe the dense spray structure of direct-injection (DI) gasoline sprays in near-nozzle region. This technique uses the line-of-sight absorption of monochromatic x-rays from a synchrotron source to measure the fuel mass with time resolution better than 1 μs. The small scattering cross-section of fuel at x-rays regime allows direct measurements of spray structure that are difficult with most visible-light optical techniques. Appropriate models were developed to determine the fuel density as a function of time.
X