Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wavelet Filtering of Cylinder Pressure Signal for Improved Polytropic Exponents, Reduced Variation in Heat Release Calculations and Improved Prediction of Motoring Pressure & Temperature

2018-04-03
2018-01-1150
Recent advancements in the combustion control of new generation engines can benefit from real time, precise sensing of the cylinder pressure profile to facilitate successful combustion feedback. Currently, even laboratory-grade pressure sensors can deliver pressure traces with insufficient signal-to-noise quality due to electrical or combustion-induced signal interference. Consequently, for example, calculation of compression and expansion polytropic indices may require statistical averaging over several cycles to deliver required information. This lag in the resultant feedback may become a concern when the calculated combustion metric is used for feedback control, especially in the case of transients. The method described in this paper involves a special digital filter offering excellent performance which facilitates reduced-error calculation of individual polytropic indices.
Technical Paper

Experimental Validation of Jet Fuel Surrogates in an Optical Engine

2017-03-28
2017-01-0262
Three jet fuel surrogates were compared against their target fuels in a compression ignited optical engine under a range of start-of-injection temperatures and densities. The jet fuel surrogates are representative of petroleum-based Jet-A POSF-4658, natural gas-derived S-8 POSF-4734 and coal-derived Sasol IPK POSF-5642, and were prepared from a palette of n-dodecane, n-decane, decalin, toluene, iso-octane and iso-cetane. Optical chemiluminescence and liquid penetration length measurements as well as cylinder pressure-based combustion analyses were applied to examine fuel behavior during the injection and combustion process. HCHO* emissions obtained from broadband UV imaging were used as a marker for low temperature reactivity, while 309 nm narrow band filtered imaging was applied to identify the occurrence of OH*, autoignition and high temperature reactivity.
Journal Article

Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions

2016-04-05
2016-01-0760
The second generation 1.8L Gasoline Direct Injection Compression Ignition (GDCI) engine was built and tested using RON91 gasoline. The engine is intended to meet stringent US Tier 3 emissions standards with diesel-like fuel efficiency. The engine utilizes a fulltime, partially premixed combustion process without combustion mode switching. The second generation engine features a pentroof combustion chamber, 400 bar central-mounted injector, 15:1 compression ratio, and low swirl and squish. Improvements were made to all engine subsystems including fuel injection, valve train, thermal management, piston and ring pack, lubrication, EGR, boost, and aftertreatment. Low firing friction was a major engine design objective. Preliminary test results indicated good improvement in brake specific fuel consumption (BSFC) over the first generation GDCI engines, while meeting targets for engine out emissions, combustion noise and stability.
Journal Article

Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine

2014-04-01
2014-01-1300
In previous work, Gasoline Direct Injection Compression Ignition (GDCI) has demonstrated good potential for high fuel efficiency, low NOx, and low PM over the speed-load range using RON91 gasoline. In the current work, a four-cylinder, 1.8L engine was designed and built based on extensive simulations and single-cylinder engine tests. The engine features a pent roof combustion chamber, central-mounted injector, 15:1 compression ratio, and zero swirl and squish. A new piston was developed and matched with the injection system. The fuel injection, valvetrain, and boost systems were key technology enablers. Engine dynamometer tests were conducted at idle, part-load, and full-load operating conditions. For all operating conditions, the engine was operated with partially premixed compression ignition without mode switching or diffusion controlled combustion.
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Journal Article

Pilot Injection Ignition Properties Under Low-Temperature, Dilute In-Cylinder Conditions

2013-10-14
2013-01-2531
Measurements of ignition behavior, homogeneous reactor simulations employing detailed kinetics, and quantitative in-cylinder imaging of fuel-air distributions are used to delineate the impact of temperature, dilution, pilot injection mass, and injection pressure on the pilot ignition process. For dilute, low-temperature conditions characterized by a lengthy ignition delay, pilot ignition is impeded by the formation of excessively lean mixture. Under these conditions, smaller pilot mass or higher injection pressures further lengthen the pilot ignition delay. Similarly, excessively rich mixtures formed under relatively short ignition delay conditions typical of conventional diesel combustion will also prolong the ignition delay. In this latter case, smaller pilot mass or higher injection pressures will shorten the ignition delay. The minimum charge temperature required to effect a robust pilot ignition event is strongly dependent on charge O2 concentration.
Journal Article

The Impact of Fuel Mass, Injection Pressure, Ambient Temperature, and Swirl Ratio on the Mixture Preparation of a Pilot Injection

2013-09-08
2013-24-0061
Fuel tracer-based planar laser-induced fluorescence is used to investigate the vaporization and mixing behavior of pilot injections for variations in pilot mass of 1-4 mg, and for two injection pressures, two near-TDC ambient temperatures, and two swirl ratios. The fluorescent tracer employed, 1-methylnaphthalene, permits a mixture of the diesel primary reference fuels, n-hexadecane and heptamethylnonane, to be used as the base fuel. With a near-TDC injection timing of −15°CA, pilot injection fuel is found to penetrate to the bowl rim wall for even the smallest injection quantity, where it rapidly forms fuel-lean mixture. With increased pilot mass, there is greater penetration and fuel-rich mixtures persist well beyond the expected pilot ignition delay period. Significant jet-to-jet variations in fuel distribution due to differences in the individual jet trajectories (included angle) are also observed.
Journal Article

Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

2013-04-08
2013-01-1665
In this study the authority of the available engine controls are characterized as the high load limit of homogeneous charge compression ignition (HCCI) combustion is approached. A boosted single-cylinder research engine is used and is equipped with direct injection (DI) fueling, a laboratory air handling system, and a hydraulic valve actuation (HVA) valve train to enable negative valve overlap (NVO) breathing. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. While both are effective at controlling combustion phasing, NVO duration is found to be a "coarse" control while fuel injection timing is a "fine" control.
Technical Paper

Direct Visualization of Combustion in an E85-Fueled DISI Engine under Various Operation Conditions

2013-04-08
2013-01-1129
Gasoline-direct-injection (GDI) engines have been adopted increasingly by the automotive industry in the recent years due to their performance, effects on the environment, and customers' demand on advanced technology. However, the knowledge of detailed combustion process in such engines is still not thoroughly analyzed and understood. With optically accessible engines (OAE) and advanced measuring techniques, such as high-speed digital imaging, the in-cylinder combustion process is made available directly to researchers. The present study primarily focuses on the effects of different parameters of engine control on the combustion process, such as fuel types, valve deactivation, ignition timing, spark energy, injection timing, air-fuel ratio, and exhaust gas recirculation. Three engine heads of a 2.0L GDI engine are used with modification to acquire different optical access.
Technical Paper

Investigation of the Interaction of Charge Motion and Residual Gas Concentration in an Optically Accessible SI Engine

2013-04-08
2013-01-0558
In spark-ignition engines, high exhaust gas recirculation (EGR) rates have demonstrated their potential in reducing fuel consumption and emissions. However, irregular combustion at high residual gas concentrations limits the EGR rates. The following study presents a strategy that has been developed to investigate the influence of complex charge motion on mixture formation and combustion for high residual gas concentrations with the aim of extending these limits. An optically accessible single-cylinder SI Engine with direct injection was used to measure the charge distribution by means of laser induced fluorescence (LIF). A special device inside the inlet pipe gave the possibility to generate a defined swirl motion overlaying a tumble motion given by the design of the inlet ports.
Technical Paper

Quantitative DISI Spray Vapor Temperature Study for Different Biofuels by Two-Line Excitation Laser-Induced Fluorescence

2012-09-10
2012-01-1658
Biofuels and alternative fuels are increasingly being blended with conventional gasoline fuel to decrease overall CO₂ emissions. A promising way to achieve this is the use of DISI (direct-injection spark-ignition) technology. However, depending on temperature, pressure, chemical composition and the spark timing, unwanted pre-ignition may occur. Despite higher compression ratios, this engine knock can be decreased by lowering the mixing temperature. This results from the larger fuel evaporation enthalpy of certain biofuels which provides a non-homogeneous mixture throughout the combustion chamber. This work focuses on estimating the biofuel evaporation rate from absolute local vapor temperature and concentration. Measurements conducted in a high temperature/pressure cell using a multi-hole injector are carried out by applying planar, 2-line, laser-induced fluorescence and phase doppler interferometry.
Technical Paper

Self-Ignition Calculation of Diesel Spray

2012-04-16
2012-01-1262
This paper describes a computer simulation of Diesel spray formation and the locations of self-ignition nuclei. The spray is divided into small elementary volumes in which the amounts of fuel and fuel vapours, air, mean, maximum and minimum fuel droplet diameter are calculated, as well as their number. The total air-fuel and air-fuel vapour ratios are calculated for each elementary volume. The paper introduces a new criterion for determining self-ignition nuclei, based on assumptions that the strongest self-ignition probability lies in those elementary volumes containing the stoichiometric air ratio, where the fuel is evaporated or the fuel droplet diameter is equal to or lower than 0.0065 mm. The most efficient combustion in regard to consumption and emission will be in those elementary volumes containing stoichiometric air ratio, and fuel droplets with the lowest mean diameters. Measurements of injection and combustion were carried out in a transparent research engine.
Journal Article

Investigation of Fuel Effects on Spray Atomization and Evaporation Studied for a Multi-hole DISI Injector with a Late Injection Timing

2011-08-30
2011-01-1982
The influence of fuel composition on sprays was studied in an injection chamber at DISI conditions with late injection timing. Fuels with high, mid and low volatility (n-hexane, n-heptane, n-decane) and a 3-component mixture with similar fuel properties like gasoline were investigated. The injection conditions were chosen to model suppressed or rapid evaporation. Mie scattering imaging and phase Doppler anemometry were used to investigate the liquid spray structure. A spray model was set up applying the CFD-Code OpenFOAM. The atomization was found to be different for n-decane that showed a smaller average droplet size due to viscosity dependence of injected mass. And for evaporating conditions, a stratification of the vapor components in the 3-component fuel spray was observed.
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Technical Paper

Interactions of Multi-hole DI Sprays with Charge Motion and their Implications to Flexible Valve-trained Engine Performance

2011-08-30
2011-01-1883
Advanced valvetrain coupled with Direct Injection (DI) provides an opportunity to simultaneous reduction of fuel consumption and emissions. Because of their robustness and cost performance, multi-hole injectors are being adopted as gasoline DI fuel injectors. Ethanol and ethanol-gasoline blends synergistically improve the performance of a turbo-charged DI gasoline engine, especially in down-sized, down-sped and variable-valvetrain engine architecture. This paper presents Mie-scattering spray imaging results taken with an Optical Accessible Engine (OAE). OAE offers dynamic and realistic in-cylinder charge motion with direct imaging capability, and the interaction with the ethanol spray with the intake air is studied. Two types of cams which are designed for Early Intake Valve Close (EIVC) and Later Intake Valve Close (LIVC) are tested, and the effect of variable valve profile and deactivation of one of the intake valves are discussed.
Technical Paper

Influence of the fuel quantity on the spray formation and ignition under current engine relevant conditions

2011-08-30
2011-01-1928
Flexible and multiple injections are an important strategy to fulfill today's exhaust emission regulations. To optimize injection processes with an increasing number of adjustable parameters knowledge about the basic mechanisms of spray breakup, propagation, evaporation and ignition is mandatory. In the present investigation the focus is set on spray formation and ignition. In order to simulate current diesel-engine conditions measurements were carried out in a high-temperature (1000 K) and high-pressure (10 MPa) vessel with optical accesses. A piezo servo-hydraulic injector pressurized up to 200 MPa was used to compare four single injection durations and four multi-injection patterns in the ignition phase. All measurements were performed with CEC RF-03-06, a legislative reference fuel. For the spray measurements, a program of 16 to 18 different operating points was chosen to simulate engine conditions from cold start to full load.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Technical Paper

Characterization of Multi-hole Spray and Mixing of Ethanol and Gasoline Fuels under DI Engine Conditions

2010-10-25
2010-01-2151
Because of their robustness and cost performance, multi-hole gasoline injectors are being adopted as the direct injection (DI) fuel injector of choice as vehicle manufacturers look for ways to reduce fuel consumption without sacrificing power and emission performance. To realize the full benefits of direct injection, the resulting spray needs to be well targeted, atomized, and appropriately mixed with charge air for the desirable fuel vapor concentration distributions in the combustion chamber. Ethanol and ethanol-gasoline blends synergistically improve the turbo-charged DI gasoline performance, especially in down-sized, down-sped and variable-valve-train engine architecture. This paper presents the spray imaging results from two multi-hole DI gasoline injectors with different design, fueled with pure ethanol (E100) or gasoline (E0), under homogeneous and stratified-charge conditions that represent typical engine operating points.
Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
X