Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Predicting Foot Positions for Manual Materials Handling Tasks

2005-06-14
2005-01-2681
For many industrial tasks (push, pull, lift, carry, etc.), restrictions on grip locations and visibility constrain the hand and head positions and help to define feasible postures. In contrast, foot locations are often minimally constrained and an ergonomics analyst can choose several different stances in selecting a posture to analyze. Also, because stance can be a critical determinant of a biomechanical assessment of the work posture, the lack of a valid method for placing the feet of a manikin with respect to the task compromises the accuracy of the analysis. To address this issue, foot locations and orientations were captured in a laboratory study of sagittal plane and asymmetric manual load transfers. A pilot study with four volunteers of varying anthropometry approached a load located on one of three shelves and transferred the load to one of six shelves.
Technical Paper

Modeling In-Vehicle Reaches Perturbed by Ride Motion

2004-06-15
2004-01-2180
Vehicle operators are required to perform a variety of reaching tasks while the vehicle is in motion. The vibration transmitted from the terrain-vehicle coupling can prevent the operator from successfully completing the required task. The level to which vibration inhibits the completion of these tasks must be more clearly understood in order to effectively design controls and displays that minimize these performance decrements. The Ride Motion Simulator (RMS) at the U.S. Army Tank-Automotive Research, Development, and Engineering Center (TARDEC) simulated single-axis and 6DOF ride motion, in which twelve participants were asked to perform push-button reaching tasks to eight RMS-mounted targets. In order to better ascertain the effects of dynamic ride motion on in-vehicle reaching tasks, we used a twelve-camera VICON optical motion capture system to record and UGS PLM Solutions’ Jack™ to analyze the associated kinematic and kinetic motions.
Technical Paper

A New Approach to Modeling Driver Reach

2003-03-03
2003-01-0587
The reach capability of drivers is currently represented in vehicle design practice in two ways. The SAE Recommended Practice J287 presents maximum reach capability surfaces for selected percentiles of a generic driving population. Driver reach is also simulated using digital human figure models. In typical applications, a family of figure models that span a large range of the target driver population with respect to body dimensions is positioned within a digital mockup of the driver's workstation. The articulated segments of the figure model are exercised to simulate reaching motions and driver capabilities are calculated from the constraints of the kinematic model. Both of these current methods for representing driver reach are substantially limited. The J287 surfaces are not configurable for population characteristics, do not provide the user with the ability to adjust accommodation percentiles, and do not provide any guidance on the difficulty of reaches that are attainable.
Technical Paper

A Pilot Study of the Effects of Vertical Ride Motion on Reach Kinematics

2003-03-03
2003-01-0589
Vehicle motions can adversely affect the ability of a driver or occupant to quickly and accurately push control buttons located in many advanced vehicle control, navigation and communications systems. A pilot study was conducted using the U.S. Army Tank Automotive and Armaments Command (TACOM) Ride Motion Simulator (RMS) to assess the effects of vertical ride motion on the kinematics of reaching. The RMS was programmed to produce 0.5 g and 0.8 g peak-to-peak sinusoidal inputs at the seat-sitter interface over a range of frequencies. Two participants performed seated reaching tasks to locations typical of in-vehicle controls under static conditions and with single-frequency inputs between 0 and 10 Hz. The participants also held terminal reach postures during 0.5 to 32 Hz sine sweeps. Reach kinematics were recorded using a 10-camera VICON motion capture system. The effects of vertical ride motion on movement time, accuracy, and subjective responses were assessed.
Technical Paper

Development of Dynamic Simulation Models of Seated Reaching Motions While Driving

1997-02-24
970589
A research effort was initiated to establish an empirical data base and to develop predictive models of normal human in-vehicle seated reaching motions while driving. A driving simulator was built, in which a variety of targets were positioned at typical locations a driver would possibly reach. Reaching motions towards these targets were performed by demographically representative subjects and measured by a state-of-the-art motion analysis system. This paper describes the experiment conducted to collect the movement data, and the new techniques that are being developed to process, analyze, and model the data. Some initial findings regarding the role of torso assistive motion, the effect of speed used in completing a motion on multi-segment dynamic postures, and illustrative results from kinematic modeling are presented.
Technical Paper

Cervical Range of Motion and Dynamic Response and Strength of Cervical Muscles

1973-02-01
730975
Basic physical characteristics of the neck have been defined which have application to the design of biomechanical models, anthropometric dummies, and occupant crash protection devices. The study was performed using a group of 180 volunteers chosen on the basis of sex, age (18-74 years), and stature. Measurements from each subject included anthropometry, cervical range-of-motion (observed with both x-rays and photographs), the dynamic response of the cervical flexor and extensor muscles to a controlled jerk, and the maximum voluntary strength of the cervical muscles. Data are presented in tabular and graphic form for total range-of-motion, cervical muscle reflex time, decelerations of the head, muscle activation time, and cervical muscle strength. The range-of-motion of females was found to average 1-12 deg greater than that of males, depending upon age, and a definite degradation in range-of-motion was observed with increasing age.
X