Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Performance Evaluation of an Eco-Driving Controller for Fuel Cell Electric Trucks in Real-World Driving Conditions

2024-04-09
2024-01-2183
Range anxiety in current battery electric vehicles is a challenging problem, especially for commercial vehicles with heavy payloads. Therefore, the development of electrified propulsion systems with multiple power sources, such as fuel cells, is an active area of research. Optimal speed planning and energy management, referred to as eco-driving, can substantially reduce the energy consumption of commercial vehicles, regardless of the powertrain architecture. Eco-driving controllers can leverage look-ahead route information such as road grade, speed limits, and signalized intersections to perform velocity profile smoothing, resulting in reduced energy consumption. This study presents a comprehensive analysis of the performance of an eco-driving controller for fuel cell electric trucks in a real-world scenario, considering a route from a distribution center to the associated supermarket.
Technical Paper

A Modified Enhanced Driver Model for Heavy-Duty Vehicles with Safe Deceleration

2023-08-28
2023-24-0171
To accurately evaluate the energy consumption benefits provided by connected and automated vehicles (CAV), it is necessary to establish a reasonable baseline virtual driver, against which the improvements are quantified before field testing. Virtual driver models have been developed that mimic the real-world driver, predicting a longitudinal vehicle speed profile based on the route information and the presence of a lead vehicle. The Intelligent Driver Model (IDM) is a well-known virtual driver model which is also used in the microscopic traffic simulator, SUMO. The Enhanced Driver Model (EDM) has emerged as a notable improvement of the IDM. The EDM has been shown to accurately forecast the driver response of a passenger vehicle to urban and highway driving conditions, including the special case of approaching a signalized intersection with varying signal phases and timing. However, most of the efforts in the literature to calibrate driver models have focused on passenger vehicles.
Technical Paper

Transformational Technologies Reshaping Transportation - An Academia Perspective

2019-10-14
2019-01-2620
This paper and the associated lecture present an overview of technology trends and of market and business opportunities created by technology, as well as of the challenges posed by environmental and economic considerations. Commercial vehicles are one of the engines of our economy. Moving goods and people efficiently and economically is a key to continued industrial development and to strong employment. Trucks are responsible for nearly 70% of the movement of goods in the USA (by value) and represent approximately 300 billion of the 3.21 trillion annual vehicle miles travelled by all vehicles in the USA while public transit enables mobility and access to jobs for millions of people, with over 10 billion trips annually in the USA creating and sustaining employment opportunities.
Technical Paper

Optimizing Battery Cooling System for a Range Extended Electric Truck

2019-04-02
2019-01-0158
Battery packs used in electrified automotive powertrains support heavy electrical loads resulting in significant heat generation within them. Cooling systems are used to regulate the battery pack temperatures, helping to slow down battery aging. Vehicle-level energy consumption simulations serve as a first step for determining the specifications of a battery cooling system based on the duty cycle and interactions with the rest of the powertrain. This paper presents the development of a battery model that takes into account the energy impact of heating in the battery and demonstrates its use in a vehicle-level energy consumption simulator to set the specifications of a suitable cooling system for a vehicle application. The vehicle application used in this paper is a Class 6 Pickup and Delivery commercial vehicle with a Range-Extended Electric Vehicle (REEV) powertrain configuration.
Technical Paper

Reducing Fuel Consumption by Using Information from Connected and Automated Vehicle Modules to Optimize Propulsion System Control

2019-04-02
2019-01-1213
Global regulatory targets and customer demand are driving the automotive industry to improve vehicle fuel efficiency. Methods for achieving increased efficiency include improvements in the internal combustion engine and an accelerating shift toward electrification. A key enabler to maximizing the benefit from these new powertrain technologies is proper systems integration work - including developing optimized controls for the propulsion system as a whole. The next step in the evolution of improving the propulsion management system is to make use of available information not typically associated with the powertrain. Advanced driver assistance systems, vehicle connectivity systems and cloud applications can provide information to the propulsion management system that allows a shift from instantaneous optimization of fuel consumption, to optimization over a route. In the current paper, we present initial work from a project being done as part of the DOE ARPA-E NEXTCAR program.
Technical Paper

Mission-based Design Space Exploration for Powertrain Electrification of Series Plugin Hybrid Electric Delivery Truck

2018-04-03
2018-01-1027
Hybrid electric vehicles (HEV) are essential for reducing fuel consumption and emissions. However, when analyzing different segments of the transportation industry, for example, public transportation or different sizes of delivery trucks and how the HEV are used, it is clear that one powertrain may not be optimal in all situations. Choosing a hybrid powertrain architecture and proper component sizes for different applications is an important task to find the optimal trade-off between fuel economy, drivability, and vehicle cost. However, exploring and evaluating all possible architectures and component sizes is a time-consuming task. A search algorithm, using Gaussian Processes, is proposed that simultaneously explores multiple architecture options, to identify the Pareto-optimal solutions.
Technical Paper

Refinement of a Parallel-Series PHEV for Year 3 of the EcoCAR 2 Competition

2014-10-13
2014-01-2908
The EcoCAR 2 team at the Ohio State University has designed an extended-range electric vehicle capable of 44 miles all-electric range, which features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and a 6-speed automated manual transmission. This vehicle is designed to reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report documents the team's refinement work on the vehicle during Year 3 of the competition, including vehicle improvements, control strategy calibration and dynamic vehicle testing, culminating in a 99% buy off vehicle that meets the goals set forth by the team. This effort was made possible through support from the U.S. Department of Energy, General Motors, The Ohio State University, and numerous competition and local sponsors.
Journal Article

Development of a Dynamic Driveline Model for a Parallel-Series PHEV

2014-04-01
2014-01-1920
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
Technical Paper

Fabrication of a Parallel-Series PHEV for the EcoCAR 2 Competition

2013-10-14
2013-01-2491
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 51 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the fabrication and control implementation process followed by the Ohio State team during Year 2 of the competition. The fabrication process includes finalizing designs based on identified requirements, building and assembling components, and performing extensive validation testing on the mechanical, electrical and control systems.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Journal Article

An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles

2011-04-12
2011-01-0880
For simulation and analysis of vehicles there is a need to have a means of generating drive cycles which have properties similar to real world driving. A method is presented which uses measured vehicle speed from a number of vehicles to generate a Markov chain model. This Markov chain model is capable of generating drive cycles which match the statistics of the original data set. This Markov model is then used in an iterative fashion to generate drive cycles which match constraints imposed by the user. These constraints could include factors such number of stops, total distance, average speed, or maximum speed. In this paper, systematic analysis was done for a PHEV fleet which consists of 9 PHEVs that were instrumented using data loggers for a period of approximately two years. Statistical analysis using principal component analysis and a clustering approach was carried out for the real world velocity profiles.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Journal Article

Design and Validation of a Control-Oriented Model of a Diesel Engine with Two-Stage Turbocharger

2009-09-13
2009-24-0122
Two-stage turbochargers are a recent solution to improve engine performance. The large flexibility of these systems, able to operate in different modes, can determine a reduction of the turbo-lag phenomenon and improve the engine tuning. However, the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization to maximize the benefits of this technology. In addition, the design and calibration of the control system is particularly complex. The transitioning between single stage and two-stage operations poses further control issues. In this scenario a model-based approach could be a convenient and effective solution to investigate optimization, calibration and control issues, provided the developed models retain high accuracy, limited calibration effort and the ability to run in real time.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

An Improved Design of a Vehicle Based Off-Road Terrain Profile Measurement System

2008-10-07
2008-01-2655
This paper discusses an improved design of a vehicle-based mobile off-road terrain profile measurement system. The proposed system includes an apparatus of sensors and on-board data acquisition hardware, equipped on a platform vehicle used to measure and record the relevant data while the vehicle travels through the off-road or terrain surface to be surveyed. A unique post-processing algorithm is then used to derive the elevation profile based on the collected data. The derived elevation profile data could be used to characterize the roughness of an off-road testing course or perform a general geographical survey or mapping. The major technical issue addressed in this system is to eliminate the effect of platform vehicle vibration on sensor measurement which if left unaddressed will result in large measurement error due to high amplitude pitch and roll movements of the platform vehicle.
Technical Paper

Cleaner Diesel Using Model-Based Design and Advanced Aftertreatment in a Student Competition Vehicle

2008-04-14
2008-01-0868
Traditionally in the United States, Diesel engines have negative connotations, primarily due to their association with heavy duty trucks, which are wrongly characterized as “dirty.” Diesel engines are more energy efficient and produce less carbon dioxide than gasoline engines, but their particulate and NOx emissions are more difficult to reduce than spark ignition engines. To tackle this problem, a number of after-treatment technologies are available, such as Diesel Lean NOx Traps (LNTs)), which reduces oxides of nitrogen, and the Diesel particulate filter (DPF), which reduces particulate matter. Sophisticated control techniques are at the heart of these technologies, thus making Diesel engines run cleaner. Another potentially unattractive aspect of Diesel engines is noise.
Technical Paper

Experimental Characterization of Mixed-Mode HCCI/DI Combustion on a Common Rail Diesel Engine

2007-09-16
2007-24-0085
Homogeneous Charge Compression Ignition (HCCI) is considered a very promising concept to achieve low NOx and Particulate Matter emissions in traditional spark ignition and Diesel engines. However, controlling the complex mechanisms which govern the combustion process and finding a proper method for the fuel introduction for Diesel HCCI engines have proven to still be a challenge. In addition, the well known IMEP limitations of HCCI combustion restrict the benefits on emissions to low engine load conditions. The current work attempts to extend the benefits of HCCI combustion to a broader range of engine operating conditions by blending the conventional Direct Injection (DI) with the external fuel atomization. A dual combustion system could potentially overcome the limits of low-load operations and allow for a gradual transition between the conventional DI mode at high load and the HCCI external mixture formation at idle and low load.
Technical Paper

A Method for the Characterization of Off-Road Terrain Severity

2006-10-31
2006-01-3498
Highway and roadway surface measurement is a practice that has been ongoing for decades now. This sort of measurement is intended to ensure a safe level of road perturbances. The measurement may be conducted by a slow moving apparatus directly measuring the elevation of the road, at varying distance intervals, to obtain a road profile, with varying degrees of resolution. An alternate means is to measure the surface roughness at highway speeds using accelerometers coupled with high speed distance measurements, such as laser sensors. Vehicles out rigged with such a system are termed inertial profilers. This type of inertial measurement provides a sort of filtered roadway profile. Much research has been conducted on the analysis of highway roughness, and the associated metrics involved. In many instances, it is desirable to maintain an off-road course such that the course will provide sufficient challenges to a vehicle during durability testing.
Technical Paper

The Impact of Worn Shocks on Vehicle Handling and Stability

2006-04-03
2006-01-0563
The intent of this research is to understand the effects worn dampers have on vehicle stability and safety through dynamic model simulation. Dampers, an integral component of a vehicle's suspension system, play an important role in isolating road disturbances from the driver by controlling the motions of the sprung and unsprung masses. This paper will show that a decrease in damping leads to excessive body motions and a potentially unstable vehicle. The concept of poor damping affecting vehicle stability is well established through linear models. The next step is to extend this concept for non-linear models. This is accomplished through creating a vehicle simulation model and executing several driving maneuvers with various damper characteristics. The damper models used in this study are based on splines representing peak force versus velocity relationships.
Technical Paper

Development and Application of Military Wheeled Vehicle Driving Cycle Generator

2005-11-01
2005-01-3560
A methodology has been developed to generate military vehicle driving cycles for use in vehicle simulation models. This methodology is based upon the mission profile for a vehicle, which is typically given within a vehicle's specifications and lists the types of terrains that the vehicle is likely to encounter. A simplistic vehicle powertrain and road load model and the Bekker vehicle-soil interaction model are used to estimate the vehicle performance over each type of terrain. Two types of driving cycles are generated within a Graphical User Interface developed within MATLAB using the results of the vehicle models: Linear modes driving cycles, and Real-world driving cycles.
X