Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
Journal Article

Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine

2014-04-01
2014-01-1376
This paper presents the results of an experimental investigation on a single cylinder engine to validate a two-component JP-8 surrogate. The two-component surrogate was chosen based on a previous investigation where the key properties, such as DCN, volatility, density, and lower heating value, of the surrogate were matched with those of the target JP-8. The matching of the auto-ignition, combustion, and emission characteristics of the surrogate with JP-8 was investigated in an actual diesel engine environment. The engine tests for the validation of the surrogate were conducted at an engine speed of 1500 rpm, a load of 3 bar, and different injection timings. The results for the cylinder gas pressure, ignition delay period, rate of heat release, and the CO, HC, and NOx emissions showed a good match between the surrogate and the target JP-8. However, the engine-out particulate matter for the surrogate was lower than that for the JP-8 at all tested conditions.
Technical Paper

Effect of Intake Pressure and Temperature on the Auto-Ignition of Fuels with Different Cetane Number and Volatility

2012-04-16
2012-01-1317
This paper investigates the effect of boost pressure and intake temperature on the auto-ignition of fuels with a wide range of properties. The fuels used in this investigation are ULSD (CN 45), FT-SPK (CN 61) and two blends of JP-8 (with CN 25 and 49). Detailed analysis of in-cylinder pressure and rate of heat release traces are made to correlate the effect of intake pressure and injection strategy on the events immediately following start of injection leading to combustion. A CFD model is applied to track the effect of intake pressure and injection strategy on the formation of different chemical species and study their role and contribution in the auto-ignition reactions. Results from a previous investigation on the effect of intake temperature on auto-ignition of these fuels are compared with the results of this investigation.
Technical Paper

Experimental Investigation of Fuel Influence on Atomization and Spray Propagation Using an Outwardly Opening GDI-Injector

2010-10-25
2010-01-2275
One fundamental subprocess for the utilization of alternative fuels for automotive applications is the in-cylinder mixture formation and therefore the fuel injection, which largely affects the combustion efficiency of internal combustion engines. This study analyzes the influence of the physical properties of various model-fuels on atomization and spray propagation at temperatures and pressures matching the operating conditions of today's gasoline engines. The experiments were carried out using an outwardly opening, piezo-driven gasoline injector. In order to cover a wide range of potential fuels the following liquids were investigated: Alcohols (Ethanol, Butanol and Decanol), alkanes (Iso-Octane, Dodecane and Heptane) and one furane (Tetrahydrofurfuryl Alcohol). The macroscopic spray propagation of the fuels was investigated using shadowgraphy. For complementary spray characterization droplet sizes and velocities were measured using Phase-Doppler Anemometry.
Journal Article

Experimental Investigation of the Interaction of MultipleGDI Injections using Laser Diagnostics

2010-04-12
2010-01-0596
In present GDI engines, multiple injection strategies are often employed for engine cold start mixture formation. In the future, these strategies may also be used to control the combustion process, and to prevent misfiring or high emission levels. While the processes occurring during individual injections of GDI injectors have been investigated by a number of researchers, this paper concentrates on the interactions of multiple injection events. Even though multiple injection strategies are already applied in most GDI engines, the impact of the first injection event on the second injection event has not been analyzed in detail yet. Different optical measurement techniques are used in order to investigate the interaction of the two closely timed injection events, as well as the effect of dwell time and the in-cylinder conditions. The injector investigated is a GDI piezo injector with an outwardly opening needle.
Technical Paper

Performance, Durability, and Stability of a Power Generator Fueled with ULSD, S-8, JP-8, and Biodiesel

2010-04-12
2010-01-0636
The feasibility of using ultra low sulfur diesel (ULSD), synthetic paraffinic kerosene (S-8), military grade jet fuel (JP-8) and commercial B20 blend (20% v biodiesel in ULSD) in a power generator equipped with a compression ignition (CI) engine was investigated according to the MIL-STD-705C military specifications for engine-driven generator sets. Several properties of these fuels such as cetane number, lubricity, viscosity, cold flow properties, heat of combustion, distillation temperatures, and flash point, were evaluated. All fuels were tested for 240 hours at a stationary load of 30 kW (60% of full load) with no alteration to the engine calibrations. The brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), frequency, and power of the generator using S-8, JP-8 and B20 were compared with the baseline fuel ULSD.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
X