Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Adaptive Energy Management Strategy Calibration in PHEVs Based on a Sensitivity Study

2013-09-08
2013-24-0074
This paper presents a sensitivity analysis-based study aimed at robustly calibrating the parameters of an adaptive energy management strategy designed for a Plugin Hybrid Electric Vehicle (PHEV). The supervisory control is developed from the Pontryagin's Minimum Principle (PMP) approach and applied to a model of a GM Chevrolet Volt vehicle. The proposed controller aims at minimizing the fuel consumption of the vehicle over a given driving mission, by achieving a blended discharge strategy over the entire cycle. The calibration study is conducted over a wide set of driving conditions and it generates a look-up table and two constant values for the three controller parameters to be used in the in-vehicle implementation. Finally, the calibrated adaptive control strategy is validated against real driving cycles showing the effectiveness of the calibration approach.
Technical Paper

Model-Based Fault Diagnosis of Spark-Ignition Direct-Injection Engine Using Nonlinear Estimations

2005-04-11
2005-01-0071
In this paper, the detection and isolation of actuator faults (both measured and commanded) occurring in the engine breathing and the fueling systems of a spark-ignition direct-injection (SIDI) engine are described. The breathing system in an SIDI engine usually consists of a fresh air induction path via an electronically controlled throttle (ECT) and an exhaust gas recirculation (EGR) path via an EGR valve. They are dynamically coupled through the intake manifold to form a gas mixture, which eventually enters the engine cylinders for a subsequent combustion process. Meanwhile, the fueling system is equipped with a high-pressure common-rail injection for a precise control of the fuel quantity directly injected into the engine cylinders. Since the coupled system is highly nonlinear in nature, the fault diagnosis will be performed by generating residuals based on multiple nonlinear observers.
Technical Paper

High Performance Fuel Cell Sedan

2004-03-08
2004-01-1003
New vehicle technologies open up a vast number of new options for the designer, removing traditional constraints. Some recent conceptual designs, such as GM's Hy-wire, have recognized this and offered innovative new architectures. Unfortunately, many other new technology concept cars do not exploit the freedoms of the new technologies, hampering themselves with traditional design cues developed for conventional powertrains. This paper will present the conceptual design of a high-power, high-speed fuel cell luxury sedan. One of the main motivations of this case study was to explore what could happen when a vehicle was designed from the ground up as a fuel cell vehicle, optimized at the overall system level as well as at the individual component level. The paper will discuss innovations in vehicle architecture and novel concepts for the electrical transmission, fuel cell system and electromagnetic suspension.
Technical Paper

High-power High-speed Road Train System

2003-11-10
2003-01-3380
This paper presents the design and development of a high-power, high-speed “road train” (with both on- and off-road applications). The system looks to optimize both high-speed operation and low-speed, close-quarters driving with the introduction of autonomous power modules. Each trailer in the road train has it own electric traction system. When driving on open roads or in open areas, each traction system receives electric energy from the high-powered tractor. However, the individual traction systems allow for distributed tractive effort, improving upon the classic road train. Further, each module has its own independent steering system, allowing for practical implementation of longer trains. Use of longer trains in open areas allows for reduced operational costs, and increased efficiency. When mobility becomes a primary concern or zero emissions operation is needed, small power supplies can allow independent trailer operation.
Technical Paper

2000 HP Tractor-Trailer for the 21st Century

2002-11-18
2002-01-3141
This paper presents the conceptual design of a high-power, high-speed tractor-trailer for severe duty applications. Design of the tractor-trailer introduces several new concepts, including the general vehicle architecture, a new electrical transmission system and a new electric tandem axle. The vehicle architecture consists of a low drag cab concept with a fully integrated turbo-generator power source, an exhaust gas electric decontamination system and auxiliaries. The electric transmission introduces a new combination of electrical machines and power electronics designed to perform under maximum load with minimum dimension, weight and price. The electric tandem axle is a new concept of an all-wheel steering independent suspension with virtual electromagnetic differential.
Technical Paper

Fast Algorithm for On-Board Torque Estimation

1999-03-01
1999-01-0541
Electronic Throttle Control systems substitute the driver in commanding throttle position, with the driver acting on a potentiometer connected to the accelerator pedal. Such strategies allow precise control of air-fuel ratio and of other parameters, e.g. engine efficiency or vehicle driveability, but require detailed information about the engine operating conditions, in order to be implemented inside the Electronic Control Unit (ECU). In order to determine throttle position, an interpretation of the driver desire (revealed by the accelerator pedal position) is performed by the ECU. In our approach, such interpretation is carried out in terms of a torque request that can be appropriately addressed knowing the actual engine-vehicle operating conditions, which depend on the acting torques. Estimates of the torque due to in-cylinder pressure (indicated torque), as well as the torque required by the vehicle (load torque), must then be available to the control module.
Technical Paper

Engine and Load Torque Estimation with Application to Electronic Throttle Control

1998-02-23
980795
Electronic throttle control is increasingly being considered as a viable alternative to conventional air management systems in modern spark-ignition engines. In such a scheme, driver throttle commands are interpreted by the powertrain control module together with many other inputs; rather than directly commanding throttle position, the driver is now simply requesting torque - a request that needs to be appropriately interpreted by the control module. Engine management under these conditions will require optimal control of the engine torque required by the various vehicle subsystems, ranging from HVAC, to electrical and hydraulic accessories, to the vehicle itself. In this context, the real-time estimation of engine and load torque can play a very important role, especially if this estimation can be performed using the same signals already available to the powertrain control module.
X