Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Flow and Spray Investigation in Direct Injection Gasoline Engines

2002-03-04
2002-01-0832
An investigation into the spray structure generated by two swirl pressure atomisers under various operating conditions in a constant-volume chamber and the in-cylinder flow pattern in an optical research direct-injection gasoline engine has been performed using CCD camera and laser Doppler velocimetry, respectively. The results provided detailed information about the effect of back pressure on the spray structure generated by the two injectors and the in-cylinder flow field which the sprays encounter following fuel injection into the cylinder during the induction and compression strokes.
Technical Paper

Flow, Combustion and Emissions in a Five-Valve Research Gasoline Engine

2001-09-24
2001-01-3556
The in-cylinder flow, mixture distribution, combustion and exhaust emissions in a research, five-valve purpose-built gasoline engine are discussed on the basis of measurements obtained using laser Doppler velocimetry (LDV), fast spark-plug hydrocarbon sampling, flame imaging and NOx/HC emissions using fast chemiluminescent and flame ionisation detectors/analysers. These measurements have been complemented by steady flow testing of various cylinder head configurations, involving single- and three-valve operation, in terms of flow capacity and in-cylinder tumble strength.
Technical Paper

Structure of high-pressure diesel sprays

2001-09-23
2001-24-0009
A comprehensive set of computational and experimental results for high- pressure diesel sprays are presented and discussed. The test cases investigated include injection of diesel into air under both atmospheric and high pressure/temperature chamber conditions, injection against pressurized and cross-flowing CF6 simulating respectively the density and flow conditions of a diesel engine at the time of injection, as well as injection into the piston bowl of both research and production turbocharged high-speed DI diesel engines. A variety of high-pressure injection systems and injector nozzles have been used including mechanical and electronic high-pressure pumps as well as common-rail systems connected to nozzles incorporating a varying number of holes with diameters ranging from conventional to micro-size.
Technical Paper

Cyclic Variations of Initial Flame Kernel Growth in a Honda VTEC-E Lean-Burn Spark-Ignition Engine

2000-03-06
2000-01-1207
Lean combustion in spark-ignition engines has long been recognised as a means of reducing both exhaust emissions and fuel consumption. However, problems associated with cycle-by-cycle variations in flame initiation and development limit the range of lean-burn operation. An experimental investigation was undertaken in order to quantify the effects of spark energy released and initial flame kernel growth on the cyclic variability of IMEP and crank angle at which 5% mass fraction was burned in a Honda VTEC-E, stratified-charge, pentroof-type, single-cylinder, optically accessed, spark-ignition engine. Simultaneous CCD images of the flame at the spark plug were acquired from two orthogonal views (one through the piston crown and one through the pentroof) on a cycle-by-cycle basis during the first 40 crank angle degrees after ignition timing, for isooctane port injection at an air to fuel ratio of 22, engine speed of 1500 RPM, 30% volumetric efficiency and 40° crank angle spark advance.
Technical Paper

Spray and Combustion Development in a Four-Valve Optical DI Diesel Engine

2000-03-06
2000-01-1183
An optical single-cylinder four-valve high speed DI Diesel engine equipped with a high-pressure electronic fuel injection system has been used to obtain information about the spray development, combustion and exhaust emissions (NOx and smoke levels) for a range of operating conditions corresponding to engine speeds between 600 and 1800 rpm, injection pressures up to 1200 bars and fuel injection quantities from idle to full load. Two six-hole vertical mini-sac type injection nozzles with different hole sizes have been employed in order to investigate the effect of nozzle hole diameter on spray formation, combustion and exhaust emissions. Parallel to the experimental programme, a computational investigation of the fuel flow distribution inside the injection system and of the subsequent spray characteristics has been performed in order to assist in the interpretation of the results.
Technical Paper

Air and Fuel Characteristics in the Intake Port of a SI Engine

1999-05-03
1999-01-1491
The interaction of fuel sprays and airflow in the intake system of a port fuel-injected spark-ignition engine has been examined experimentally in a pulsating-flow rig which comprised the cylinder head and intake manifold of a production engine connected to a large-capacity plenum chamber, with the camshaft of the intake valves driven by an electrical motor at engine speeds between 1000 and 5000 rpm and with air sucked through the system by a suction fan. Static pressure measurements in the intake port showed periodic pulsations with frequencies of 360 and 200 Hz with open and closed valves, respectively, and these corresponded to quarter- and half-waves in the manifold and were independent of engine speed.
Technical Paper

Modeling of Pressure-Swirl Atomizers for GDI Engines

1999-03-01
1999-01-0500
A new simulation approach to the modeling of the whole fuel injection process within a common-rail fuel injection system for direct-injection gasoline engines, including the pressure-swirl atomizer and the conical hollow-cone spray formed at the nozzle exit, is presented. The flow development in the common-rail fuel injection system is simulated using an 1-D model which accounts for the wave dynamics within the system and predicts the actual injection pressure and injection rate throughout the nozzle. The details of the flow inside its various flow passages and the discharge hole of the pressure-swirl atomizer are investigated using a two-phase CFD model which calculates the location of the liquid-gas interface using the VOF method and estimates the transient formation of the liquid film developing on the walls of the discharge hole due to the centrifugal forces acting on the swirling fluid.
Technical Paper

Measurements of the Lubricant Film Thickness in the Cylinder of a Firing Diesel Engine Using LIF

1998-10-19
982435
A laser-induced fluorescence (LIF) system has been developed to obtain measurements of the instantaneous lubricant film thickness in the piston-cylinder assembly of a firing single-cylinder, direct-injection diesel engine. Measurements were made at top-dead-centre (TDC), mid-stroke and bottom-dead-centre (BDC) position by means of three fibre optic probes inserted into the cylinder liner and mounted flush with its surface. Following extensive repeatability tests, the cycle-averaged lubricant film thickness was estimated for different multi-grade oils as a function of engine speed, load and temperature. The results quantified the dependence of the film thickness ahead, under and behind the piston rings on oil chemistry and viscometric properties, thus confirming the important role of the LIF technique in the development and formulation of new engine oils.
Technical Paper

Cold-start Measurements of the Lubricant Film Thickness in the Cylinder of a Firing Diesel Engine

1998-10-19
982436
Laser induced fluorescence (LIF) was used in the cylinder liner of a firing single-cylinder direct-injection diesel engine to characterise the development of the lubricant film during the first 200 engine cycles under cold-start conditions. The results have provided information on the rate of oil film development which has proved to be a highly unsteady process due to the complicated oil transport processes through the ring-pack.
Technical Paper

Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine

1998-02-23
981044
Direct flame imaging and pressure analysis were applied to the combustion of gasoline and compressed natural gas (CNG) in a single-cylinder, four-valve spark-ignition engine equipped with optical access via quartz windows in the cylinder liner and piston crown. Tests were performed at three engine speed/load conditions and at equivalence ratios of 1.0, 0.9 and 0.8. The four-valve head incorporated two different port geometries, with and without metal sleeves to deflect the intake air flow, in order to investigate the effect of tumble strength on combustion and engine-out emissions of unburned hydrocarbons and NOx. The results showed that sleeving of the intake ports produced a significant increase in IMEP and a reduction in CoV IMEP for both CNG and gasoline, due to the greatly reduced bum duration.
Technical Paper

Droplet Velocity/Size and Mixture Distribution in a Single-Cylinder Four-Valve Spark-Ignition Engine

1998-02-01
981186
Laser Doppler velocimetry, phase Doppler anemometry and Mie scattering were applied to a single-cylinder, four-valve, spark-ignition gasoline research engine equipped with a fully transparent liner and piston, to obtain information about the tumble flow and the droplet size and velocity distributions during induction and compression, for lean air/fuel mixture ratios of 17.5 and 24 and with closed-valve and open-valve fuel injection. The mixture distribution obtained with the two injection strategies was correlated with flame images, pressure analysis and exhaust emissions which confirmed the advantages of combining open-valve injection with tumble to allow stable and efficient engine operation at an air/fuel ratio of 24 through charge stratification and faster flame growth.
Technical Paper

Effect of Fuel Injection Processes on the Structure of Diesel Sprays

1997-02-24
970799
A diesel spray model has been developed and validated against experimental data obtained for different injection and surrounding gas conditions to allow investigation of the relative importance of the different physical processes occurring during the spray development. The model is based on the Eulerian-Lagrangian approximation and the Navier-Stokes equations, simulating the gas motion, are numerically solved on a collocated non-uniform curvilinear non-orthogonal grid, while the spray equation is solved numerically using a Lagrangian particle tracking method. The injection conditions are determined by another recently developed model calculating the flow in the fuel injection system, the sac volume and injection holes area which accounts for the details of the injection velocity, the fuel injection rate per injection hole and occurrence of hole cavitation. Thus, differences between the sprays from inclined multihole injectors can be simulated and analysed.
Technical Paper

Evaluation of the Influence of Injector Type in a Four-Valve Engine

1996-10-01
961998
The performance of a four-valve engine operating with combustion in all cylinders has been determined in terms of indicated mean-effective pressure, drivability and concentrations of unburned hydrocarbon in the exhaust gases with a stoichiometric mixture of gasoline and air and four injectors including two with air assist. In addition, size and velocity characteristics of the fuel sprays were measured with a phase-Doppler velocimeter outside and inside the engine. With operation at a steady rotational speed of 1200 rpm, the indicated mean- effective cylinder pressure and its covariance were found to be nearly constant with the initiation of injection from 150 to 600 degrees of crank angle after top-dead-centre of intake.
Technical Paper

The Effect of Injector and Intake Port Design on In-Cylinder Fuel Droplet Distribution, Airflow and Lean Burn Performance for a Honda VTEC-E Engine

1996-10-01
961923
The droplet velocity, size and distributions of iso-octane fuel from single hole and twin jet air-assist injectors have been measured by phase Doppler velocimetry in the pent-roof for two cylinder head designs of firing four-valve engines running at 1500 rpm, together with the airflow during induction and compression. The use of the twin jet air-assist injector together with the introduction of a transfer-passage between the two intake ports of a Honda VTEC-E valve train arrangement resulted in reduction in ISNOx and COV-1mep of the order of half of those with the single hole injector design without a transfer passage. Droplets, for both heads and injectors, having passed the inlet valves, impinged directly onto the sleeve opposite to their entry without striking the exhaust valves and had velocities up to 30 m/s and Sauter mean diameters which varied from 20 to 50pm.
Technical Paper

Droplet Characteristics in Two Cylinders of a Firing Spark-Ignition Engine

1995-10-01
952466
Previous measurements of the velocity, size and number density of droplets have been reported in one cylinder of a production two-valve engine as a function of position, crank angle, injection timing, rotational speed, load and cooling water temperature. In this paper, similar measurements are reported in two cylinders of the same engine, this time with four cylinders firing, and with two manifolds and injectors. They were obtained with a phase-Doppler velocimeter with measurements ensembled in relation to an optical shaft encoder. The engine was also instrumented to provide air and fuel flow rates and temperatures. The results show that most of the droplets emerge in a comparatively small region of the inlet valve and that the characteristics of the spray are important mainly when injection takes place with the inlet valve open.
Technical Paper

Development of a Piston-Ring Lubrication Test-Rig and Investigation of Boundary Conditions for Modelling Lubricant Film Properties

1995-10-01
952468
A test-rig has been developed to simulate under idealised conditions the lubricating action between the piston-ring and the cylinder-liner in reciprocating engines. Complications arising in production engine piston-assemblies such as lubricant starvation, ring and piston dynamics, thermal and elastic deformations and blowby can thus be avoided so that the lubricant film characteristics are examined in isolation. The lubricant film thickness and friction at the piston-ring/liner interface were simultaneously measured throughout the stroke as a function of speed and load and compared with the solution of the Reynolds equation for a range of boundary conditions. The examined conditions included the Swift-Stieber (Reynolds), the separation and limiting cases of the Floberg and the Coyne & Elrod boundary conditions using a numerically efficient general purpose program.
Technical Paper

Influence of Injection Timing on In-Cylinder Fuel Distribution in a Honda VTEC-E Engine

1995-02-01
950507
Measurements are presented of droplet characteristics and air velocity in the cylinder of a 0.36 litre four valve engine, equipped with an sohc VTEC-E valve train and port injection. The results show that injection at crank angles, θinj(s), when the inlet valve is open results in most of the liquid volume flux being in the form of droplets with Sauter mean diameter between 20 and 30 mm which strikes the sleeve up to about 2.5 cm below the exhaust valves, thus generating a locally rich cloud there. The amount of liquid phase gasoline passing through the plane 16 mm below the spark plug gap increases with θinj(s) up to 50 CA after intake TDC and this, together with the crank angle of droplet arrival and vapour generation, controls stratification of the gaseous fuel phase. The optimum injection time is when the fuel-rich cloud is generated so that the tumble vortex convects it to the spark plug at the time of ignition.
Technical Paper

Cyclic Variations in a Lean-Burn Spark Ignition Engine Without and With Swirl

1995-02-01
950683
Measurements of cylinder pressure and flame travel velocity have been obtained in a single cylinder engine with two arrangements of port geometry and with mixture equivalence ratios from 0.68 to 0.9. They are complemented by photographs of the flame development and measurements of local velocity. The investigation compares the combustion processes in terms of the maximum pressure, flame speed and in-cylinder flow velocity without and with an intake shroud which increased both the tumble and swirl ratios. The extent to which residual burned gas retarded the combustion rate and increased cyclic variability are quantified. The photographic studies confirm the dominant effect of the swirling flow on flame propagation and deviations of the flame kernel from spherical as the air-fuel ratio is increased, with much higher probability of influence of velocity fluctuations.
Technical Paper

An Approach to Charge Stratification in Lean-Burn, Spark- Ignition Engines

1994-10-01
941878
A constant-volume combustion chamber was used to examine injection of a small quantity of slightly rich fuel/air mixture towards the spark plug around the time of ignition, in an overall very lean mixture rotating at velocities representative of modern spark-ignition engines. The results show that it is possible to achieve 100% ignitability with overall air-fuel ratios in excess of 50 and much faster burn rates than those with initially homogenous mixtures of the same equivalence ratio with high swirl and turbulence. The advantages of this method of local charge stratification have been demonstrated in terms of both pressure measurements and shadowgraphs of the early flame development while the transient characteristics of the injected rich mixture at the spark plug gap were monitored by a fast flame ionization detector.
Technical Paper

Imaging of Lean Premixed Flames in Spark-Ignition Engines

1994-10-01
942052
Two optical single-cylinder spark-ignition engines equipped with two- and four-valve cylinder heads were used to examine the flow and flame interaction under lean mixture conditions. Images of the developing flame under quiescent, swirl, low tumble and high tumble flow conditions corresponding to a wide range of mean velocity and turbulence levels around the time of ignition were obtained with an image-intensified CCD camera using the light radiated by the flame and the flow in the vicinity of the spark plug was quantified by laser Doppler velocimetry. In the case of the tumbling flow, the flame images were software-processed to allow estimation of the total flame area, the displacement of its centre as a function of crank angle and their correlation with the cylinder pressure.
X