Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Approach for Prediction of Motorcycle Engine Noise under Combustion Load

2015-06-15
2015-01-2244
In this paper the approach to predict engine noise under combustion forces is presented. This Methodology is divided into three stages: 1. Multi body dynamic (MBD) Simulation to determine excitation forces 2. Vibration analysis of engine under combustion load 3. Acoustic analysis of engine to predict Sound Pressure Level (SPL). Important parts of motorcycle engine with single cylinder are considered as flexible bodies for MBD simulation. It is necessary to accurately model crankshaft ball bearing for capturing the accurate transmissibility of combustion forces from crankshaft to casings. In this work crankshaft ball bearing is modeled with 6×6 stiffness matrix. It provides coupling between radial, axial and tilting deflections of bearing and it also allows moment transfer from crankshaft to casing. It helps to predict the realistic forces at bearings. Forces predicted from MBD simulation are applied to engine FE model for carrying out vibration analysis.
Technical Paper

Optimization of the Dynamic Behaviour of Gasoline Engine to Reduce Valve Train Noise

2015-01-14
2015-26-0132
High fuel efficiency, low ownership/ maintenance cost and favorable driving climate are the major reasons for the increasing demand for low-power commuter motorcycles and scooters, particularly in developing countries like India, Brazil and China. Noise Vibration and Harshness (NVH) has now become a new subject for the battle between competing manufacturers in attracting customers. Valvetrain noise is quite significant in the engines of these cost gasoline vehicles as they don't incorporate a Hydraulic Lash Adjuster (HLA) to keep the manufacturing costs less. The aim of this study was to understand how the cam ramp velocity and height affects the noise generated by the engine and what effect they have on its performance.For this study, a small scooter gasoline engine with an Over Head Camshaft (OHC) and a rocker arrangement with a roller-follower was considered. A commercially available numerical code was used to simulate the kinematic and dynamic behaviour of the valvetrain system.
Technical Paper

A Unified Approach for Prediction and Control of Motorcycle Vibration Subjected to Engine Dynamic Force

2014-03-24
2014-01-2015
In this paper the approach to predict vibrations in motorcycles is presented. It can be divided mainly in two parts: prediction of engine forces using multi body dynamics (MBD) simulation and prediction of vibration response using FEA. Dynamic forces predicted at each engine mount through MBD simulation are used as input to FE analysis for vibration prediction. Single cylinder SI engine having primary balancer shaft is considered to develop this methodology. Flexibilities of important parts are considered for MBD simulation. Crankshaft ball bearing which is used in almost all two wheeler engine is modeled with 6×6 stiffness matrix. It provides coupling between radial, axial and tilting deflections of bearing and it also allows moment transfer from crankshaft to casing. This helps to predict realistic forces at each bearing and engine mounts. Distribution of primary and secondary forces at crank bearings and at different engine mounts is studied.
X