Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

2024-09-12
Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. The goal of this two-day course is to introduce engineers and managers to the basic principles of cooling airflow systems for commercial and off-road vehicles.
Technical Paper

Simulation of Hydrogen Combustion in Spark Ignition Engines Using a Modified Wiebe Model

2024-07-02
2024-01-3016
Due to its physical and chemical properties, hydrogen is an attractive fuel for internal combustion engines, providing grounds for studies on hydrogen engines. It is common practice to use a mathematical model for basic engine design and an essential part of this is the simulation of the combustion cycle, which is the subject of the work presented here. One of the most widely used models for describing combustion in gasoline and diesel engines is the Wiebe model. However, for cases of hydrogen combustion in DI engines, which are characterized by mixture stratification and in some cases significant incomplete combustion, practically no data can be found in the literature on the application of the Wiebe model. Based on Wiebe's formulas, a mathematical model of hydrogen combustion has been developed. The model allows making computations for both DI and PFI hydrogen engines. The parameters of the Wiebe model were assessed for three different engines in a total of 26 operating modes.
Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Simulating Cloud Environments of Connected Vehicles for Anomaly Detection

2024-07-02
2024-01-2996
The emergence of connected vehicles is driven by increasing customer and regulatory demands. To meet these, more complex software applications, some of which require service-based cloud and edge backends, are developed. Due to the short lifespan of software, it becomes necessary to keep these cloud environments and their applications up to date with security updates and new features. However, as new behavior is introduced to the system, the high complexity and interdependencies between components can lead to unforeseen side effects in other system parts. As such, it becomes more challenging to recognize whether deviations to the intended system behavior are occurring, ultimately resulting in higher monitoring efforts and slower responses to errors. To overcome this problem, a simulation of the cloud environment running in parallel to the system is proposed. This approach enables the live comparison between simulated and real cloud behavior.
Technical Paper

A computational study of hydrogen direct injection using a pre-chamber in an opposed-piston engine

2024-07-02
2024-01-3010
Opposed-piston two-stroke engines offer numerous advantages over conventional four-stroke engines, both in terms of fundamental principles and technical aspects. The reduced heat losses and large volume-to-surface area ratio inherently result in a high thermodynamic efficiency. Additionally, the mechanical design is simpler and requires fewer components compared to conventional four-stroke engines. When combining this engine concept with alternative fuels such as hydrogen and pre-chamber technology, a potential route for carbon-neutral powertrains is observed. To ensure safe engine operation using hydrogen as fuel, it is crucial to consider strict safety measures to prevent issues such as knock, pre-ignition, and backfiring. One potential solution to these challenges is the use of direct injection, which has the potential to improve engine efficiency and expand the range of load operation.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

The 3D-CFD Contribution to H2 Engine Development for CV and Off-Road Application

2024-07-02
2024-01-3017
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known schlieren technique and use helium as a safe substitute for H2.
Technical Paper

Miller Cycle and Internal EGR in Diesel Engines Using Alternative Fuels

2024-07-02
2024-01-3020
The Single Cylinder Research Engine (SCRE) at the Institute of Internal Combustion Engines and Powertrain Systems is equipped with a variable valve train that allows to switch between regular intake valve lift and early intake valve closing (Miller). On the exhaust side, a secondary valve lift on each valve is possible with adjustable back pressure and thus the possibility of realising internal EGR. In combination with alternative fuels, even if they are Drop-In capable as HVO, properties differ and can influence the emission and efficiency behaviour. The investigations of this paper are focusing on regenerative Drop-In fuel (HVO), fossil fuel (B7), and an oxygenate (OME), that needs adaptions at the engine control unit, but offers further emission potential. By commissioning a 2-stage boost system, it is possible to fully equalize the air mass in Miller mode compared to the normal valve lift.
Technical Paper

Enhancing BEV Energy Management: Neural Network-Based System Identification for Thermal Control Strategies

2024-07-02
2024-01-3005
Modeling thermal systems in Battery Electric Vehicles (BEVs) is crucial for enhancing energy efficiency through predictive control strategies, thereby extending vehicle range. A major obstacle in this modeling is the often limited availability of detailed system information. This research introduces a methodology using neural networks for system identification, a powerful technique capable of approximating the physical behavior of thermal systems with minimal data requirements. By employing black-box models, this approach supports the creation of optimization-based operational strategies, such as Model Predictive Control (MPC) and Reinforcement Learning-based Control (RL). The system identification process is executed using MATLAB Simulink, with virtual training data produced by validated Simulink models to establish the method's feasibility. The neural networks utilized for system identification are implemented in MATLAB code.
Technical Paper

Computational Method to Determine the Cooling Airflow Utilization Ratio of Passenger Cars Considering Component Deformation

2024-07-02
2024-01-2975
In order to improve the efficiency of passenger cars, developments focus on decreasing their aerodynamic drag, part of which is caused by cooling air. Thus, car manufacturers try to seal the cooling air path to prevent leakage flows. Nevertheless, gaps between the single components of the cooling air path widen due to the deformation of components under aerodynamic load. For simulating the cooling airflow utilization ratio (CAUR), computational fluid dynamics (CFD) simulations are used, which neglect component deformation. In this paper, a computational method aiming at sufficient gap resolution and determining the CAUR of passenger cars under the consideration of component deformation is developed. Therefore, a partitioned approach of fluid structure interaction (FSI) simulations is used. The fluid field is simulated in OpenFOAM, whereas the structural simulations are conducted using Pam-Crash.
Technical Paper

Numerical Investigation of Injection and Mixture Formation in Hydrogen Combustion Engines by Means of Different 3D-CFD Simulation Approaches

2024-07-02
2024-01-3007
For the purpose of achieving carbon-neutrality in the mobility sector by 2050, hydrogen can play a crucial role as an alternative energy carrier, not only for direct usage in fuel cell-powered vehicles, but also for fueling internal combustion engines. This paper focuses on the numerical investigation of high-pressure hydrogen injection and the mixture formation inside a high-tumble engine with a conventional liquid fuel injector for passenger cars. Since the traditional 3D-CFD approach of simulating the inner flow of an injector requires a very high spatial and temporal resolution, the enormous computational effort, especially for full engine simulations, is a big challenge for an effective virtual development of modern engines. An alternative and more pragmatic lagrangian 3D-CFD approach offers opportunities for a significant reduction in computational effort without sacrificing reliability.
Technical Paper

Graph based cooperation strategies for automated vehicles in mixed traffic

2024-07-02
2024-01-2982
In the context of urban smart mobility, vehicles have to communicate with each other, surrounding infrastructure, and other traffic participants. By using Vehicle2X communication, it is possible to exchange the vehicles’ position, driving dynamics data, or driving intention. This concept yields the use for cooperative driving in urban environments. Based on current V2X-communication standards, a methodology for cooperative driving of automated vehicles in mixed traffic scenarios is presented. Initially, all communication participants communicate their dynamic data and planned trajectory, based on which a prioritization is calculated. Therefore, a decentralized cooperation algorithm is introduced. The approach is that every traffic scenario is translatable to a directed graph, based in which a solution for the cooperation problem is computed via an optimization algorithm.
X