Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Liquid Film Evaporation Off the Piston of a Direct Injection Gasoline Engine

2001-03-05
2001-01-1204
An optical access engine was used to image the liquid film evaporation off the piston of a simulated direct injected gasoline engine. A directional injector probe was used to inject liquid fuel (gasoline, i-octane and n-pentane) directly onto the piston of an engine primarily fueled on propane. The engine was run at idle conditions (750 RPM and closed throttle) and at the Ford World Wide Mapping Point (1500 RPM and 262 kPa BMEP). Mie scattering images show the liquid exiting the injector probe as a stream and directly impacting the piston top. Schlieren imaging was used to show the fuel vaporizing off the piston top late in the expansion stroke and during the exhaust stroke. Previous emissions tests showed that the presence of liquid fuel on in-cylinder surfaces increases engine-out hydrocarbon emissions.
Technical Paper

Effects of Swirl and Tumble on In-Cylinder Fuel Distribution in a Central Injected DISI Engine

2000-03-06
2000-01-0533
The effect of the in-cylinder bulk flow on fuel distributions in the cylinder of a motored direct-injection S.I. engine was measured. Five different bulk flows were induced through combinations of shrouded and unshrouded valves, and port deactivation: stock, high tumble, reverse tumble, swirl, and swirl/tumble. Planar Mie scattering was used to observe the fuel spray movement in the centerline plane of a transparent cylinder engine. A fiber optic instrumented spark plug was used to measure the resulting cycle-resolved equivalence ratio in the vicinity of the spark plug. The four-valve engine had the injector located on the cylinder axis; the fiber optic probe was located between the intake valves. Injection timings of 90, 180, and 270 degrees after TDC were examined. Measurements were made at 750 and 1500 rpm with certification gasoline at open throttle conditions. From the images it was found that the type and strength of the bulk flow greatly affected the spray behavior.
Technical Paper

Late Intake Valve Closing with Throttle Control at Light Loads for a Lean-Burn Natural Gas Engine

1999-10-25
1999-01-3485
Heavy-duty natural gas engines available today are typically derived from diesel engines. The biggest discrepancy in thermal efficiency between a natural gas engine and its diesel counterpart comes at low loads. This is particularly true for a lean-burn throttle-controlled refuse hauler. Field data shows that a refuse hauler operates at low speeds for the majority of the time, averaging between 3 to 7 miles per hour. As a result, many developers focus primarily on the improvement of thermal efficiency at light loads and low speeds. One way to improve efficiency at light loads is through the use of a late intake valve closing (IVC) technique. With the increase in electronic and hydraulic control technologies, the potential benefits of late IVC with unthrottled control are realizable in production engines.
X