Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Measurement of Hydrogen Jet Equivalence Ratio using Laser Induced Breakdown Spectroscopy

2024-04-09
2024-01-2623
Hydrogen exhibits the notable attribute of lacking carbon dioxide emissions when used in internal combustion engines. Nevertheless, hydrogen has a very low energy density per unit volume, along with large emissions of nitrogen oxides and the potential for backfire. Thus, stratified charge combustion (SCC) is used to reduce nitrogen oxides and increase engine efficiency. Although SCC has the capacity to expand the lean limit, the stability of combustion is influenced by the mixture formation time (MFT), which determines the equivalence ratio. Therefore, quantifying the equivalence ratio under different MFT is critical since it determines combustion characteristics. This study investigates the viability of using a Laser Induced Breakdown Spectroscopy (LIBS) for measuring the jet equivalence ratio. Furthermore, study was conducted to analyze the effect of MFT and the double injection parameter, namely the dwell time and split ratio, on the equivalence ratio.
Technical Paper

Improvements of Thermal and Combustion Efficiencies by Modifying a Piston Geometry in a Diesel/Natural Gas RCCI Engine

2023-04-11
2023-01-0280
To meet the target of the CO2 regulations, it is mandatory to replace high-carbon fossil fuels with low-carbon fuels. Diesel/Natural Gas (NG) reactivity-controlled compression ignition (RCCI) can reduce CO2 emission, which stratifies two types of fuels with different reactivity. And also, RCCI produces less NOx and particulate matter emissions by reducing the in-cylinder temperature. However, RCCI must still be enhanced in terms of the thermal and combustion efficiencies at low and medium loads. In this work, a modified piston geometry was applied to improve the RCCI combustion. The piston geometry was designed to minimize heat loss and reduce flame quenching in an RCCI engine. Experiments were conducted using a single-cylinder engine with a displacement volume of 1,000 cc. Diesel was directly injected into the cylinder, and NG was fed through the intake port.
Technical Paper

The Effect of Engine Parameters on In-Cylinder Pressure Reconstruction from Vibration Signals Based on a DNN Model in CNG-Diesel Dual-Fuel Engine

2023-04-11
2023-01-0861
In marine or stationary engines, consistent engine performance must be guaranteed for long-haul operations. A dual-fuel combustion strategy was used to reduce the emissions of particulates and nitrogen oxides in marine engines. However, in this case, the combustion stability was highly affected by environmental factors. To ensure consistent engine performance, the in-cylinder pressure measured by piezoelectric pressure sensors is generally measured to analyze combustion characteristics. However, the vulnerability to thermal drift and breakage of sensors leads to additional maintenance costs. Therefore, an indirect measurement via a reconstruction model of the in-cylinder pressure from engine block vibrations was developed. The in-cylinder pressure variation is directly related to the block vibration; however, numerous noise sources exist (such as, valve impact, piston slap, and air flowage).
Technical Paper

Work Extraction Efficiency in a Series Hybrid Opposed Piston Engine

2021-09-21
2021-01-1242
This work investigates the development of a novel series hybrid architecture utilizing a single cylinder opposed piston engine. The opposed piston engine presents unique benefits in a hybrid architecture such as its lower heat transfer due to a favorable surface area to volume ratio and lack of a cylinder head, as well as the thermodynamic benefits of two stroke operation with uniflow scavenging. A particular focus of this effort is the work extraction efficiency of two design concepts. The first design concept utilizes a geartrain to couple the crankshafts of the engine in a conventional manner, providing a single power take-off for coupling to an electric motor/generator. In this design, the large inertia of the geartrain dampens the speed fluctuation of the single cylinder engine, reducing the peak torque required to for the electric machine. However, the friction losses caused by the geartrain limit the maximum work extraction efficiency.
Journal Article

Combustion Phenomena and Emissions in a Dual-Fuel Optical Engine Fueled with Diesel and Natural Gas

2021-09-21
2021-01-1175
The application of dual-fuel combustion in the freight transportation sectors has received considerable attention due to the capability of achieving higher fuel efficiency and less pollutant emissions than the conventional diesel engines. In this study, high-speed flame visualization was used to investigate the phenomena of natural gas/diesel dual-fuel combustion in a single-cylinder heavy-duty engine with optical access. To implement diverse fuel blending conditions, diesel injection timing and natural gas substitution ratio were varied under constant fuel energy input. A novel flame regime separation method was implemented based on color segmentation in HSV color space to characterize the spatial distributions of premixed and non-premixed flame regimes. Flame images for larger natural gas substitution showed a significant reduction in the non-premixed flame regime accompanied by flame propagation along the vaporized diesel sprays.
Technical Paper

Effect of Injection Strategy on Hydrogen Direct-Injection Spark-Ignition Engine

2021-09-05
2021-24-0050
The use of hydrogen as a possible fuel for internal combustion (IC) engines can help build a society with a clean transportation framework. Diluting the in-cylinder mixture can improve the efficiency of the engines. To prove the validity of lean burn in hydrogen IC engines, three different combustion modes are investigated in this study. The engine experiments are conducted in a spray-guided direct-injection (DI) spark-ignition engine with 10 MPa of hydrogen DI. When lean burn is applied to a hydrogen IC engine, the characteristics of pumping and heat transfer loss improve. The improvement in heat transfer loss is more significant than the reduction in negative pumping work for the indicated thermal efficiency. Among the three combustion modes, stratified charge combustion (SCC) develops the maximum indicated mean effective pressure. However, this mode deteriorates the combustion stability slightly. The nitrogen oxide emission is reduced when the excess air ratio is increased.
Technical Paper

Accelerometer-Based Estimation of Combustion Features for Engine Feedback Control of Compression-Ignition Direct-Injection Engines

2020-04-14
2020-01-1147
An experimental investigation of non-intrusive combustion sensing was performed using a tri-axial accelerometer mounted to the engine block of a small-bore high-speed 4-cylinder compression-ignition direct-injection (CIDI) engine. This study investigates potential techniques to extract combustion features from accelerometer signals to be used for cycle-to-cycle engine control. Selection of accelerometer location and vibration axis were performed by analyzing vibration signals for three different locations along the block for all three of the accelerometer axes. A magnitude squared coherence (MSC) statistical analysis was used to select the best location and axis. Based on previous work from the literature, the vibration signal filtering was optimized, and the filtered vibration signals were analyzed. It was found that the vibration signals correlate well with the second derivative of pressure during the initial stages of combustion.
Technical Paper

Real-Time Embedded Models for Simulation and Control of Clean and Fuel-Efficient Heavy-Duty Diesel Engines

2020-04-14
2020-01-0257
This paper presents a framework for modeling a modern diesel engine and its aftertreatment system which are intended to be used for real-time implementation as a virtual engine and in a model-based control architecture to predict critical variables such as fuel consumption and tailpipe emissions. The models are specifically able to capture the impact of critical control variables such as the Exhaust Gas Recirculation (EGR) valve position and fuel injection timing, as well as operating conditions of speed and torque, on the engine airpath variables and emissions during transient driving conditions. To enable real-time computation of the models, a minimal realization of the nonlinear airpath model is presented and it is coupled with a cycle averaged NOx emissions predictor to estimate feed gas NOx emissions. Then, the feedgas enthalpy is used to calculate the thermal behavior of the aftertreatment system required for prediction of tailpipe emissions.
Journal Article

Portable In-Cylinder Pressure Measurement and Signal Processing System for Real-Time Combustion Analysis and Engine Control

2020-04-14
2020-01-1144
This paper presents an in-cylinder pressure measurement system for cycle-to-cycle feedback combustion control purposes. Such a system uses off-the-shelf components to measure cylinder pressure and performs user-defined algorithms for heat release analysis. The working principle of the device is discussed as well as the simplifications for heat release analysis required for fast computation. The system is benchmarked against a commercially-available combustion analyzer in order to quantify the accuracy and time response. The results showed that the system is satisfactorily accurate for combustion phasing control. The main advantage, however, comes from the reduction of calculation and communication delays observed in the commercially-available system. This enables the use of cycle-to-cycle cylinder pressure-based feedback control algorithms.
Technical Paper

Potential to Reduce Nano-Particle Emission in SG-DISI Engine with Normal Butane

2019-09-09
2019-24-0022
Lean stratified combustion is a mean to dilute the fuel-air mixture leaner than stoichiometric ratio, by using stratification of fuel gradient in a spark ignition engine. Under the lean stratified combustion, differed from the stoichiometric homogeneous charge combustion, flame could propagate through extremely rich air-fuel mixture, while the global air-fuel mixture is under lean condition. The rich mixture causes considerable amount of particulate matter, but, due to large effect of efficiency improvement, the attractive point is on fuel economy compare to homogeneous charge SI combustion. The easiest way to reduce particulate matter is changing fuel to gaseous hydrocarbon, to minimize evaporating and mixing period.
Technical Paper

Equivalent Consumption Minimization Strategy for a Power Split Supercharger

2019-04-02
2019-01-1207
Low voltage hybridization (<60 V) supports engine start/stop, regenerative braking, and constrained torque assist/regeneration at a low cost. This work studies the potential benefits of a novel hybrid system, called a power split supercharger (PSS). A 9 kW motor is shared between boosting the engine or providing hybrid functionalities, allowing it to couple with a small engine and still support good acceleration. However, the PSS operation is limited to only one of the parallel hybrid or boosting modes at each time instance. In this work an equivalent consumption minimization strategy (ECMS) is developed to select the PSS mode and the motor torque during hybrid mode. The PSS operation is simulated over standard EPA drive cycles with an engine mean value model that captures detailed air path and PSS dynamics.
Technical Paper

Particle Reduction in LPG Lean Stratified Combustion by Intake Strategies

2019-04-02
2019-01-0253
Lean stratified combustion shows high potential to reduce fuel consumption because it operates without the intervention of a throttle valve. Despite its high fuel economy potential, it emits large amounts of particulate matter (PM) because the locally rich mixture is formed at the periphery of a spark plug. Furthermore, the combustion phasing angle is not realized at MBT ignition timing, which can bring high work conversion efficiency. Since PM emission and work conversion efficiency are in a trade-off relation, this research focused on reducing PM emission through achieving high work conversion efficiency. Two intake air control strategies were examined in this research; throttle operation and late intake valve closing (LIVC). The experiment was conducted in a single cylinder spray-guided direct injection spark ignition (SG-DISI) engine with liquefied petroleum gas (LPG). The injected fuel amount was fixed so as to investigate the effect of each strategy.
Technical Paper

The Fuel Economy Improvement through the Knock Margin Expansion in a Turbocharged Gasoline Direct Injection Engine

2018-09-10
2018-01-1671
Knocking combustion limits the downsized gasoline engines’ potential for improvement with regard to fuel economy. The high in-cylinder pressure and temperature caused by the adaptation of a turbocharger aggravates the tendency of the end-gas to autoignite. Thus, the knocking combustion does not allow for further advancing of the combustion phase. In this research, the effects of the ignition and valve timings on knocking combustion were investigated under steady-state conditions. Moreover, the optimal ignition and valve timings for the transient operations were derived with the aim of a greater fuel economy improvement, based on the steady-state analysis. A 2.0 liter turbocharged gasoline direct injection engine with continuously variable valve timing (CVVT), was utilized for this experiment. 2, 10, and 18 bar brake mean effective pressure (BMEP) load conditions were used to represent the low, medium, and high load operations, respectively.
Journal Article

Assessing a Hybrid Supercharged Engine for Diluted Combustion Using a Dynamic Drive Cycle Simulation

2018-04-03
2018-01-0969
This study uses full drive cycle simulation to compare the fuel consumption of a vehicle with a turbocharged (TC) engine to the same vehicle with an alternative boosting technology, namely, a hybrid supercharger, in which a planetary gear mechanism governs the power split to the supercharger between the crankshaft and a 48 V 5 kW electric motor. Conventional mechanically driven superchargers or electric superchargers have been proposed to improve the dynamic response of boosted engines, but their projected fuel efficiency benefit depends heavily on the engine transient response and driver/cycle aggressiveness. The fuel consumption benefits depend on the closed-loop engine responsiveness, the control tuning, and the torque reserve needed for each technology. To perform drive cycle analyses, a control strategy is designed that minimizes the boost reserve and employs high rates of combustion dilution via exhaust gas recirculation (EGR).
Technical Paper

Thermodynamic and Practical Benefits of Waste Energy Recovery Using an Electric Turbo-Generator Under Different Boosting Methods

2018-04-03
2018-01-0851
This paper provides insight into the tradeoffs between exhaust energy recovery and increased pumping losses from the flow restriction of the electric turbo-generator (eTG) assessed using thermodynamic principles and with a detailed GT-Power engine model. The GT-Power engine model with a positive displacement expander model was used to predict the influence of back pressure on in-cylinder residuals and combustion. The eTG is assessed for two boosting arrangements: a conventional turbocharger (TC) and an electrically assisted variable speed (EAVS) supercharger (SC). Both a low pressure (post-turbine) and high pressure (pre-turbine) eTG are considered for the turbocharged configuration. The reduction in fuel consumption (FC) possible over various drive cycles is estimated based on the steady-state efficiency of frequently visited operating points assuming all recovered energy can be reused at an engine efficiency of 30% with 10% losses in the electrical path.
Technical Paper

Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels

2017-10-08
2017-01-2327
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
Technical Paper

Spray and Combustion of Diesel Fuel under Simulated Cold-Start Conditions at Various Ambient Temperatures

2017-09-04
2017-24-0069
The spray and combustion of diesel fuel were investigated to provide a better understanding of the evaporation and combustion process under the simulated cold-start condition of a diesel engine. The experiment was conducted in a constant volume combustion chamber and the engine cranking period was selected as the target ambient condition. Mie scattering and shadowgraph techniques were used to visualize the liquid- and vapor-phase of the fuel under evaporating non-combustion conditions (oxygen concentration=0%). In-chamber pressure and direct flame visualization were acquired for spray combustion conditions (oxygen concentration=21%). The fuel was injected at an injection pressure of 30 MPa, which is the typical pressure during the cranking period.
Technical Paper

Effect of Injector Nozzle Hole Geometry on Particulate Emissions in a Downsized Direct Injection Gasoline Engine

2017-09-04
2017-24-0111
In this study, the effect of the nozzle tip geometry on the nozzle tip wetting and particulate emissions was investigated. Various designs for the injector nozzle hole were newly developed for this study, focusing on the step hole geometry to reduce the nozzle tip wetting. The laser induced fluorescence technique was applied to evaluate the fuel wetting on the nozzle tip. A vehicle test and an emissions measurement in a Chassi-Dynamo were performed to investigate the particulate emission characteristics for injector nozzle designs. In addition, the in-cylinder combustion light signal measurement by the optical fiber sensor was conducted to observe diffusion combustion behavior during the vehicle test. Results showed that the step hole surface area is strongly related to nozzle tip wetting and particulate emissions characteristics. Injectors without the step hole and with a smaller step hole geometry showed significant reduction of nozzle tip wetting and number of particulate emissions.
Technical Paper

Modelling and Control of Engine Torque for Short-Circuit Flow and EGR Evacuation

2017-03-28
2017-01-0606
Low-Pressure Exhaust Gas Recirculation (LP-EGR) has been shown to be an effective means of improving fuel economy and suppressing knock in downsized, boosted, spark ignition engines. LP-EGR is particularly beneficial at low-speed, high-load conditions, but can lead to combustion instability at lower loads. The transport delays inherent in LP-EGR systems slow the reduction of intake manifold EGR concentrations during tip-out events, which may lead to excessive EGR concentrations at low load. This paper explores leveraging Variable Valve Timing (VVT) as a means of improving the rate of reduction of intake manifold EGR concentration prior to tip-out. At higher boost levels, high valve overlap may result in intake manifold gas passing directly to the exhaust manifold. This short-circuiting behaviour could potentially improve EGR evacuation rates.
Technical Paper

Effects of Differential Pressure Sensor Gauge-Lines and Measurement Accuracy on Low Pressure EGR Estimation Error in SI Engines

2017-03-28
2017-01-0531
Low Pressure (LP) Exhaust Gas Recirculation (EGR) promises fuel economy benefits at high loads in turbocharged SI engines as it allows better combustion phasing and reduces the need for fuel enrichment. Precise estimation and control of in-cylinder EGR concentration is crucial to avoiding misfire. Unfortunately, EGR flow rate estimation using an orifice model based on the EGR valve ΔP measurement can be challenging given pressure pulsations, flow reversal and the inherently low pressure differentials across the EGR valve. Using a GT-Power model of a 1.6 L GDI turbocharged engine with LP-EGR, this study investigates the effects of the ΔP sensor gauge-line lengths and measurement noise on LP-EGR estimation accuracy. Gauge-lines can be necessary to protect the ΔP sensor from high exhaust temperatures, but unfortunately can produce acoustic resonance and distort the ΔP signal measured by the sensor.
X