Refine Your Search

Topic

Search Results

Technical Paper

Recycling-Based Reduction of Energy Consumption and Carbon Emission of China’s Electric Vehicles: Overview and Policy Analysis

2018-04-03
2018-01-0659
Electric vehicles maintain the fastest development in China and undertake the responsibility of optimizing energy consumption and carbon emission in the transportation field. However, from the entire life cycle point of view, although electric vehicles have a certain degree of energy consumption and carbon emission reduction in the use phase, they cause extra energy consumption and carbon emission in the manufacturing phase, which weakens the due environmental benefits to some extent. The recycling of electric vehicles can effectively address the issue and indirectly reduce the energy consumption and carbon emission in the manufacturing phase. China is setting up the recycling system and strengthening regulation force to achieve proper energy consumption and carbon emission reduction benefits of electric vehicles. Under the current electric vehicle recycling technologies, China can reduce about 34% of carbon emission in electric vehicle manufacturing phase.
Journal Article

Cycle-by-Cycle Analysis of Cold Crank-Start in a GDI Engine

2016-04-05
2016-01-0824
The first 3 cycles in the cold crank-start process at 20°C are studied in a GDI engine. The focus is on the dependence of the HC and PM/PN emissions of each cycle on the injection strategy and combustion phasing of the current and previous cycles. The PM/PN emissions per cycle decrease by more than an order of magnitude as the crank-start progresses from the 1st to the 3rd cycle, while the HC emissions stay relatively constant. The wall heat transfer, as controlled by the combustion phasing, during the previous cycles has a more significant influence on the mixture formation process for the current cycle than the amount of residual fuel. The results show that the rise in HC emissions caused by the injection spray interacting with the intake valves and piston crown is reduced as the cranking process progresses. Combustion phasing retard significantly reduces the PM emission. The HC emissions, however, are relatively not sensitive to combustion phasing in the range of interest.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Ignition Delay Correlation for Engine Operating with Lean and with Rich Fuel-Air Mixtures

2016-04-05
2016-01-0699
An ignition delay correlation encompassing the effects of temperature, pressure, residual gas, EGR, and lambda (on both the rich and lean sides) has been developed. The procedure uses the individual knocking cycle data from a boosted direct injection SI engine (GM LNF) operating at 1250 to 2000 rpm, 8-14 bar GIMEP, EGR of 0 to 12.5%, and lambda of 0.8 to 1.3 with a certification fuel (Haltermann 437, with RON=96.6 and MON=88.5). An algorithm has been devised to identify the knock point on individual pressure traces so that the large data set (of some thirty three thousand cycles) could be processed automatically. For lean and for rich operations, the role of the excess fuel, air, and recycled gas (which has excess air in the lean case, and hydrogen and carbon monoxide in the rich case) may be treated effectively as diluents in the ignition delay expression.
Journal Article

Effect of Operation Strategy on First Cycle CO, HC, and PM/PN Emissions in a GDI Engine

2015-04-14
2015-01-0887
The impact of the operating strategy on emissions from the first combustion cycle during cranking was studied quantitatively in a production gasoline direct injection engine. A single injection early in the compression cycle after IVC gives the best tradeoff between HC, particulate mass (PM) and number (PN) emissions and net indicated effective pressure (NIMEP). Retarding the spark timing, it does not materially affect the HC emissions, but lowers the PM/PN emissions substantially. Increasing the injection pressure (at constant fuel mass) increases the NIMEP but also the PM/PN emissions.
Journal Article

On the Nature of Particulate Emissions from DISI Engines at Cold-Fast-Idle

2014-04-01
2014-01-1368
Particulate emissions from a production gasoline direct injection spark ignition engine were studied under a typical cold-fast-idle condition (1200 rpm, 2 bar NIMEP). The particle number (PN) density in the 22 to 365 nm range was measured as a function of the injection timing with single pulse injection and with split injection. Very low PN emissions were observed when injection took place in the mid intake stroke because of the fast fuel evaporation and mixing processes which were facilitated by the high turbulent kinetic energy created by the intake charge motion. Under these conditions, substantial liquid fuel film formation on the combustion chamber surfaces was avoided. PN emissions increased when injection took place in the compression stroke, and increased substantially when the fuel spray hit the piston.
Technical Paper

Closed-loop Control of Low Temperature Combustion Employing Ion Current Detecting Technology

2014-04-01
2014-01-1362
Based on high EGR rate, the low temperature combustion (LTC) has been studied widely, of which the application range is more extensive than the homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI). As the high EGR rate would influence the condition of intake charge, it would also affect the combustion process and the HC emissions, thus the combustion stability of LTC would be lower than tradition diesel combustion. In this study, an ion current detecting technology was employed to explore the ion current at different EGR rates. Meanwhile, the combustion parameters were also investigated, which included the in-cylinder pressure and heat release rate. The CA50 and CAI50 were adopted as the phases of combustion and ion current, which respectively represented the crank angle of mid-point for the integrated heat release and integrated ion current. Then the correlation between CA50 and CAI50 was analysed.
Technical Paper

The Nature of Heat Release in Gasoline PPCI Engines

2014-04-01
2014-01-1295
The heat release characteristics in terms of the maximum pressure rise rate (MPRR) and combustion phasing in a partially premixed compression ignition (PPCI) engine are studied using a calibration gasoline. Early port fuel injection provides a nearly homogeneous charge, into which a secondary fuel pulse is added via direct injection (DI) to provide stratification which is affected by the timing of the start of injection (SOI). As the SOI the DI fuel is retarded from early compression, MPRR first decreases, then increases substantially, and decreases again. The MPRR correlates mostly with the combustion phasing. The SOI timing plays an indirect role. The observation is explained by a bulk heat release process of which the rate increases with temperature rather than by a sequential ignition process. Observations from compression ignition of representative homogeneous charges in a Rapid Compression Machine support this explanation.
Journal Article

Understanding Knock Metric for Controlled Auto-Ignition Engines

2013-04-08
2013-01-1658
The knock metric for controlled auto-ignition (CAI) engines is assessed by considering the physical processes that establish the pressure wave that contributes to the acoustic radiation of the engine, and by analyzing pressure data from a CAI engine. Data sets from the engine operating with port fuel injection, early direct injection and late direct injection are used to monitor the effect of mixture composition stratification. Thermodynamic analysis shows that the local pressure rise produced by heat release has to be discounted by the work spent in acoustic expansion against the ambient pressure to properly predict the pressure wave amplitude. Based on this analysis, a modified correlation between the pressure wave amplitude and the maximum pressure rise rate (MPRR) is developed by introducing an MPRR offset to account for the expansion work.
Technical Paper

Assessing the Loss Mechanisms Associated with Engine Downsizing, Boosting and Compression Ratio Change

2013-04-08
2013-01-0929
The loss mechanisms associated with engine downsizing, boosting and compression ratio change are assessed. Of interest are the extents of friction loss, pumping loss, and crevice loss. The latter does not scale proportionally with engine size. These losses are deconstructed via a cycle simulation model which encompasses a friction model and a crevice loss model for engine displacement of 300 to 500 cc per cylinder. Boost pressure is adjusted to yield constant torque. The compression ratio is varied from 8 to 20. Under part load, moderate speed condition (1600 rpm; 13.4 Nm/cylinder brake torque), the pumping work reduces significantly with downsizing while the work loss associated with the crevice volume increases. At full load (1600 rpm; 43.6 Nm/cylinder brake torque), the pumping work is less significant. The crevice loss (normalized to the fuel energy) is essentially the same as in the part load case. The sensitivities of the respective loss terms to downsizing are reported.
Technical Paper

Numerical Simulation on Spray Atomization and Fuel-Air Mixing Process in a Gasoline Direct Injection Engine

2012-04-16
2012-01-0395
Numerical simulation has been widely used in the engine development process to improve the development quality, especially in the area of in-cylinder flow and fuel evaporation. In this paper, a fuel spray model for a gasoline direct injection (GDI) engine, calibrated against spray visualization in a spray bomb, is developed to characterize the fuel spray atomization, vaporization, and interaction with in-cylinder air flow. With this model, fuel atomization and fuel-air mixing process are thoroughly analyzed at full load operating conditions at both low and high speeds. It is shown that fuel spray at high speed is deflected towards intake side, leading to limited wall wetting, piston wetting, and good vaporization, due to intensive tumble flow and high temperature. The results from the numerical simulation provide important guideline for the development of a GDI engine.
Technical Paper

An Online Crank-Angle-Resolved Mean-Value Combustion Model of Gasoline Engines Including Effects of Cycle Initial States

2012-04-16
2012-01-0129
Online combustion efficiency optimization in a variable-valve-timing (VVT) gasoline engine requires the real-time knowledge of in-cylinder pressure and its various derivatives. The in-cylinder pressure measurements, however, are still inapplicable to current light duty vehicles due to the high cost of fast pressure sensors. In this paper, an effective combustion model is developed to provide online prediction of crank-angle resolved (CAR) in-cylinder pressure evolution given five representative initial states at intake valve closing (IVC). The prediction of the combustion pressure is made by incorporating mean-value mass/energy flow models with the first law thermodynamics. To achieve real-time calculation for end-use engines, this paper improves the validity region of the existing mass/energy flow models while preserving their simplicity.
Technical Paper

Design of Engine Gear-Driven Mass Balance Unit and NVH Performance Optimization

2012-04-16
2012-01-0890
Extensive experimental and numerical investigations with respect to mass balance unit (MBU) were reported to improve the vibration and acoustic performance for inline 4-cylinder engine due to unbalanced inherent secondary order inertial forces. Design of gear-driven MBU with two parallel shafts and two gear pairs which was positioned beneath the crankshaft would be described in the paper. For the sake of compact package and reliable design, the driving gear ring of the system was shrink fitted onto the crankweb, and issues such as lubrication, strength, assembly were taken into account during design process. As a result, 93.66% of 2nd order mass force balance was achieved and2nd vibration level of engine was decreased remarkably. However, acoustical behavior was deteriorated due to gear impact and rattle at the engagement. Extra efforts were paid to solve the unpleasant noise through internal and external excitation optimizations.
Technical Paper

Estimation and Analysis of Crank-Angle-Resolved Gas Exchange Process of Spark-Ignition Engines

2012-04-16
2012-01-0835
Intake volumetric efficiency (VE) of a spark-ignition engine varies with valve timings, engine speeds, and manifold air loads. The existing approaches to reveal the underlying effects of these VE factors on instant valve flows remain complicated and expensive. In an effort to develop an applicable approach to analyze the detail valve flows, a naturally aspirated production engine with dual independent VVT was dynamometer-tested with fast in-cylinder pressure measurements and slow manifold pressure measurements. Both intake and exhaust valve flow was then reproduced using a new model, DQS model, in crank-angle resolution (CAR). One new flow mechanism, the flow wave subsidence, has been revealed to be one of the major drives of VE changes. We propose a dynamic quasi-steady (DQS) flow model to reproduce the valve flow profile from the measured pressure data. The DQS model features two manifold dynamics and a delay in the use of in-cylinder pressure measurements.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Technical Paper

Influence of Intake Port Charge-Motion-Control-Valve on Mixture Preparation in a Port-Fuel-Injection Engine

2007-10-29
2007-01-4013
The effects of the directed port flow produced by a Charge-Motion-Control-Valve (CMCV) on mixture preparation in a Port-Fuel-Injection engine were assessed under conditions typical of fast idle in a cold start process. The port fuel was found to comprise two components: a “valve” puddle (at the vicinity of the valve) that built up quickly, and that was mainly responsible for the delivery of the fuel to the cylinder charge; a “port” puddle located significantly upstream. The latter was mainly created by the reverse back flow process and built up slowly. Although the fuel amounts in these two components were roughly the same, the latter did not significantly interact with the fuel transport to the cylinder charge. The CMCV only weakly affected the purging or filling time of the valve puddle, hence the dynamics of the fuel delivery process was not materially affected.
Technical Paper

On HCCI Engine Knock

2007-07-23
2007-01-1858
Knock in a HCCI engine was examined by comparing subjective evaluation, recorded sound radiation from the engine, and cylinder pressure. Because HCCI combustion involved simultaneous heat release in a spatially large region, substantial oscillations were often found in the pressure signal. The time development of the audible signal within a knock cycle was different from that of the pressure trace. Thus the audible signal was not the attenuated transmission of the cylinder pressure oscillation but the sound radiation from the engine structure vibration excited by the initial few cycles of pressure oscillation. A practical knock limited maximum load point for the specific 2.3 L I4 engine under test (and arguably for engines of similar size and geometry) was defined at when the maximum rate of cycle-averaged pressure rise reached 5 MPa/ms.
Technical Paper

Effect of Intake Cam Phasing on First Cycle Fuel Delivery and HC Emissions in an SI Engine

2004-06-08
2004-01-1852
A strategy to facilitate the mixture preparation process in PFI engines is to delay the Intake Valve Opening (IVO) by shifting the cam phasing so that the cylinder pressure is sub-atmospheric when the valve opens. The physics of the effect are discussed in terms of the pressure differential between the manifold and the cylinder, and the resulting flow and charge temperature history. The effect was evaluated by measuring the equivalence ratio of the trapped charge and the exhaust HC emissions in the first cycle of cranking in a 2.4L engine. When the IVO timing was changed from 18° BTDC to 21° ATDC, the in-cylinder fuel equivalence ratio increased by approximately 10%. This increase was attributed mainly to the enrichment of the charge by displacing the leaner mixture at the top of the cylinder in the period between BDC and IVC. The exhaust HC, however, increased by 40%. No conclusive explanation was established for this increase in HC emissions.
Technical Paper

Spark Ignition Engine Hydrocarbon Emissions Behaviors in Stopping and Restarting

2002-10-21
2002-01-2804
Engine Hydrocarbon (HC) emissions behaviors in the shut down and re-start processes were examined in a production 4-cylinder 2.4 L engine. Depending on when the power to the ECU was cut off relative to the engine events, there could be two or three mis-fired cylinders (i.e. cylinders with fuel injected but no ignition). The total HC pumped out by the engine into the catalyst in the stopping process was ∼ 4 mg (approximately equaled to the amount of one injection at idle condition). Because the size of the catalyst was larger than the total exhaust volume in the stopping process, this HC was not observed at the catalyst exit. The catalyst temperature was also not affected. When the engine was purged after shut down (by cranking the engine with the injectors and ignition disconnected), the total exit HC was 33 mg. In a restart 90 minutes after shut down, the integrated amount of HC emissions due to residual fuel from the stopping process was 16 mg.
Technical Paper

Throttle Movement Rate Effects on Transient Fuel Compensation in a Port-Fuel-Injected SI Engine

2000-06-19
2000-01-1937
Throttle ramp rate effects on the in-cylinder fuel/air (F/A) excursion was studied in a production engine. The fuel delivered to the cylinder per cycle was measured in-cylinder by a Fast Response Flame Ionization detector. Intake pressure was ramped from 0.4 to 0.9 bar. Under slow ramp rates (∼1 s ramp time), the Engine Electronic Control (EEC) unit provided the correct compensation for delivering a stoichiometric mixture to the cylinder throughout the transient. At fast ramp rates (a fraction of a second ramps), a lean spike followed by a rich one were observed. Based on the actual fuel injected in each cycle during the transient, a x-τ model using a single set of x and τ values reproduced the cycle-to-cycle in-cylinder F/A response for all the throttle ramp rates.
X