Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

Cost-Effective D-DPF Design of Aftertreatment System for Non-Road Mobile Machinery China Stage IV

2024-04-09
2024-01-2136
Since Non-Road Mobile Machinery (NRMM) China stage IV legislation has been implemented from 2022, some engines within maximum rated power between 37 to 560 kW are required for gaseous emissions, particulate matter (PM) and particulate number (PN) control, evaluated over testing cycle of Non-Road Transient Cycle (NRTC) and Non-Road Steady Cycle (NRSC). The pollutants from diesel engines, widely used in NRMM applications, can be controlled using aftertreatment systems which are comprised of a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF), or optionally a selective catalytic reduction (SCR). In this paper, a compact D-DPF design is introduced and discussed on application in harvesters, tractors, and forklifts. Because harvesters have higher exhaust gas temperature than other applications, more passive regeneration behaviors were observed. Subsequently, a compact design of DOC catalyst on DPF (D-DPF) was studied, in other words is to coat DOC catalyst on DPF.
Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Technical Paper

Sub-23nm Particle Emissions from China6 Gasoline Vehicles over Various Driving Cycles

2023-04-11
2023-01-0395
Sub-23nm particles emission from the light-duty vehicle is widely discussed now and possible to be counted into the next stage emission legislation, such as Euro7. In this article, 16 China6 gasoline vehicles were tested over the WLTC and two surrogate RDE lab cycles for particulate number (PN) emission, the difference between PN23 (particle size >23nm) and PN10 (particle size>10nm) emission was analyzed. Testing results showed that the average PN10 emission increased 59% compared to PN23, which will bring great challenges for those vehicles to meet the future regulation requirement if sub-23nm particle is counted. The sub-23nm particles emission was proportional to the PN23 particles emission and generated mostly from the cold start or the transient engine conditions with rich combustion. Compared to the proposal of Euro 7, PN10 emission from some tested vehicles will need further two orders of magnitude reduction.
Technical Paper

Calculation Methods Impact on Real-Driving-Emissions Particulate Number Evaluation: Moving Averaging Window in China 6 vs. Raw Mileage Averaging in Euro 6d

2022-03-29
2022-01-0567
RDE test has been introduced to the light-duty vehicle certification process in both China 6 and Euro 6d standards. The RDE test shall be performed on-road with PEMS, which is developed to complement the current laboratory certification of vehicles and ensure cars to deliver low emissions under more realistic on-road driving conditions. Particulate matter has been highly perceived as a significant contributor to human health risks and thus strictly regulated globally. For the RDE evaluation, the MAW method used by the China 6 standard is usually found less stringent than the RMA method used by the Euro 6d standard. In the present study, both of the MAW and RMA methods were applied to different driving cycles and operating conditions, which met the general RDE test requirements, yet resulted in different evaluated PN results.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Modeling the Dynamic Coupling of Internal Nozzle Flow and Spray Formation for Gasoline Direct Injection Applications

2018-04-03
2018-01-0314
A numerical study has been carried out to assess the effects of needle movement and internal nozzle flow on spray formation for a multi-hole Gasoline Direct Injection system. The coupling of nozzle flow and spray formation is dynamic in nature and simulations with pragmatic choice of spatial and temporal resolutions are needed to analyze the sprays in a GDI system. The dynamic coupling of nozzle flow and spray formation will be performed using an Eulerian-Lagrangian Spray Atomization (ELSA) approach. In this approach, the liquid fuel will remain in the Eulerian framework while exiting the nozzle, while, depending on local instantaneous liquid concentration in a given cell and amount of liquid in the neighboring cells, part of the liquid mass will be transferred to the Lagrangian framework in the form of Lagrangian parcels.
Journal Article

The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine

2017-08-18
2017-01-9378
The design of modern diesel-powered vehicles involves optimization and balancing of trade-offs for fuel efficiency, emissions, and noise. To meet increasingly stringent emission regulations, diesel powertrains employ aftertreatment devices to control nitrogen oxides, hydrocarbons, carbon monoxide, and particulate matter emissions and use active exhaust warm-up strategies to ensure those devices are active as quickly as possible. A typical strategy for exhaust warm-up is to operate with retarded combustion phasing, limited by combustion stability and HC emissions. The amount of exhaust enthalpy available for catalyst light-off is limited by the extent to which combustion phasing can be retarded. Diesel cetane number (CN), a measure of fuel ignition quality, has an influence on combustion stability at retarded combustion phasing. Diesel fuel in the United States tends to have a lower CN (both minimum required and average in market) than other countries.
Technical Paper

Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems

2017-03-28
2017-01-0834
An extensive numerical study of two-phase flow inside the nozzle holes and the issuing jets for a multi-hole direct injection gasoline injector is presented. The injector geometry is representative of the Spray G nozzle, an eight-hole counter-bored injector, from the Engine Combustion Network (ECN). Homogeneous Relaxation Model (HRM) coupled with the mixture multiphase approach in the Eulerian framework has been utilized to capture the phase change phenomena inside the nozzle holes. Our previous studies have demonstrated that this approach is capable of capturing the effect of injection transients and thermodynamic conditions in the combustion chamber, by predicting phenomenon such as flash boiling. However, these simulations were expensive, especially if there is significant interest in predicting the spray behavior as well.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

2015-09-06
2015-24-2436
This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Technical Paper

Measured and Predicted Soot Particle Emissions from Natural Gas Engines

2015-09-06
2015-24-2518
Due to the new challenge of meeting number-based regulations for particulate matter (PM), a numerical and experimental study has been conducted to better understand particulate formation in engines fuelled with compressed natural gas. The study has been conducted on a Heavy-Duty, Euro VI, 4-cylinder, spark ignited engine, with multipoint sequential phased injection and stoichiometric combustion. For the experimental measurements two different instruments were used: a condensation particle counter (CPC) and a fast-response particle size spectrometer (DMS) the latter able also to provide a particle size distribution of the measured particles in the range from 5 to 1000 nm. Experimental measurements in both stationary and transient conditions were carried out. The data using the World Harmonized Transient Cycle (WHTC) were useful to detect which operating conditions lead to high numbers of particles. Then a further transient test was used for a more detailed and deeper analysis.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

2015-04-14
2015-01-0855
The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Journal Article

Load Limit Extension in Pre-Mixed Compression Ignition Using a 2-Zone Combustion System

2015-04-14
2015-01-0860
A novel 2-zone combustion system was examined at medium load operation consistent with loads in the light duty vehicle drive cycle (7.6 bar BMEP and 2600 rev/min). Pressure rise rate and noise can limit the part of the engine map where pre-mixed combustion strategies such as HCCI or RCCI can be used. The present 2-zone pistons have an axial projection that divides the near TDC volume into two regions (inner and outer) joined by a narrow communication channel defined by the squish height. Dividing the near TDC volume provides a means to prepare two fuel-air mixtures with different ignition characteristics. Depending on the fuel injection timing, the reactivity of the inner or outer volume can be raised to provide an ignition source for the fuel-air mixture in the other, less reactive volume. Multi-dimensional CFD modeling was used to design the 2-zone piston geometry examined in this study.
Journal Article

The Effect of Operating Parameters on Soot Emissions in GDI Engines

2015-04-14
2015-01-1071
Due to the upcoming regulations for particulate matter (PM) emissions from GDI engines, a computational fluid dynamic (CFD) modeling study to predict soot emissions (both mass and solid particle number) from gasoline direct injection (GDI) engines was undertaken to provide insights on how and why soot emissions are formed from GDI engines. In this way, better methods may be developed to control or reduce PM emissions from GDI engines. In this paper, the influence of engine operating parameters was examined for a side-mounted fuel injector configuration in a direct-injection spark-ignition (DISI) engine. The present models are able to reasonably predict the influences of the variables of interest compared to available experimental data or literature. For a late injection strategy, effects of the fuel composition, and spray cone angle were investigated with a single-hole injector.
Journal Article

Experimental and Modeling Study of Ash Impact on DPF Backpressure and Regeneration Behaviors

2015-04-14
2015-01-1063
One field-returned DPF loaded with a high amount of ash is examined using experimental and modeling approaches. The ash-related design factors are collected by coupling the inspection results from terahertz spectroscopy with a calibrated DPF model. The obtained ash packing density, ash layer permeability and ash distribution profile are then used in the simulation to assess the ash impact on DPF backpressure and regeneration behaviors. The following features have been observed during the simulation: 1 The ash packing density, ash layer permeability and ash distribution profile should be collected at the same time to ensure the accurate prediction of ash impact on DPF backpressure. Missing one ash property could mislead the measurement of the other two parameters and thus affects the DPF backpressure estimation. 2 The ash buildup would gradually increase the frequency for the backpressure-based active soot regeneration.
Technical Paper

Comparison of Variable Valve Actuation, Cylinder Deactivation and Injection Strategies for Low-Load RCCI Operation of a Light Duty Engine

2015-04-14
2015-01-0843
While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
X