Refine Your Search

Topic

null

Affiliation

Search Results

Journal Article

Design of a Flywheel Based Energy Storage and Distribution System for Rural Villages in China

2009-04-20
2009-01-0525
There are 30 million people in remote, rural communities in China without access to electricity. The government of China has initiated an ongoing effort to provide constant, reliable power to these citizens. Renewable energy is being utilized to solve this problem, which necessitates the use of a storage medium for energy, because renewable energies (i.e. wind and/or solar power) are inherently intermittent, variable, and largely unpredictable. By storing excess energy when it is plentiful (for a maximum feasible time of two days) and distributing it to the community in times of scarcity, the intermittent power is effectively leveled and auxiliary power is provided. A high-inertia flywheel was designed for this application because of its simplicity, ease of maintenance, low cost, and reliability. This design addresses many problems including bearing losses, aerodynamic losses, and distribution losses. The proposed design consists of a six spoke layout with a large outer ring.
Technical Paper

Investigation of Cold Start Capability of a Briggs and Stratton Engine Using Jet A Fuel and Microwave Plasma Ignition

2009-04-20
2009-01-1057
There is a growing interest in improving engine versatility through the capacity to run on more than one fuel. To aid in this effort, the research presented in this paper investigated a novel system using microwave plasma ignition designed with the goal of allowing standard gasoline engines to run on non-standard fuels. The fuel used was Jet A. The test engine was a Briggs and Stratton single cylinder engine outfitted with an aftermarket fuel injection system and the microwave plasma ignition system. The tests performed were to determine the cold-start temperature limit, the lowest temperature at which the engine could be repeatedly started, using microwave plasma ignition with a conventional spark plug as a reference. A detailed system outline is presented, as well as results and conclusions. Recommendations for further research are also suggested.
Technical Paper

High-Level Modeling of an RF Pulsed Quarter Wave Coaxial Resonator with Potential use as an SI Engine Ignition Source

2008-04-14
2008-01-0089
Significant environmental and economic benefit could be obtained if spark ignited (SI) engines could be made more efficient. Engine operation using leaner fuel air mixtures at higher power densities and pressures promise higher thermal efficiencies. Mixtures required for such operation are often difficult to ignite with traditional spark plugs. In pursuit of better ignition sources, this paper presents a high-level model of an alternative microwave plasma ignition source under development. In this publication, atmospheric measurements of a pulsed microwave ignitor are used to derive an empirical model that will allow for control and increased energy delivery to the device. The model accounts for a simplistic plasma formation delay, a drop in resonance frequency as a result of plasma formation, and a subsequent change in associated microwave reflection coefficient.
Technical Paper

Weight Effect on Emissions and Fuel Consumption from Diesel and Lean-Burn Natural Gas Transit Buses

2007-08-05
2007-01-3626
Transit agencies across the United States operate bus fleets primarily powered by diesel, natural gas, and hybrid drive systems. Passenger loading affects the power demanded from the engine, which in turn affects distance-specific emissions and fuel consumption. Analysis shows that the nature of bus activity, taking into account the idle time, tire rolling resistance, wind drag, and acceleration energy, influences the way in which passenger load impacts emissions. Emissions performance and fuel consumption from diesel and natural gas powered buses were characterized by the West Virginia University (WVU) Transportable Emissions Testing Laboratory. A comparison matrix for all three bus technologies included three common driving cycles (the Braunschweig Cycle, the OCTA Cycle, and the ADEME-RATP Paris Cycle). Each bus was tested at three different passenger loading conditions (empty weight, half weight, and full weight).
Technical Paper

Experimental Investigation of Dielectrics for Use in Quarter Wave Coaxial Resonators

2007-04-16
2007-01-0256
Current research has involved manipulating the ignition inside of the combustion chamber. It has been demonstrated that an RF plasma flame can be generated from microwaves in a Quarter Wave Coaxial Cavity Resonator (QWCCR). By using this method, it may become possible for researchers to improve combustion and ignition characteristics of a modern internal combustion engine. Filling a plasma cavity with an appropriate dielectric medium can both alter electromagnetic properties and provide a suitable protective barrier to the harsh condition inside of a combustion cylinder. It is the purpose of this paper is to investigate both the operating frequency and quality factor of dielectric-filled cavities, as well as to suggest dielectrics that would be suitable for such an application.
Technical Paper

Neural Network Modeling of Emissions from Medium-Duty Vehicles Operating on Fisher-Tropsch Synthetic Fuel

2007-04-16
2007-01-1080
West Virginia University has conducted research to characterize the emissions from medium-duty vehicles operating on Fischer-Tropsch synthetic gas-to-liquid compression ignition fuel. The West Virginia University Transportable Heavy Vehicle Emissions Testing Laboratory was used to collect data for gaseous emissions (carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbon) while the vehicles were exercised through a representative driving schedule, the New York City Bus Cycle (NYCB). Artificial neural networks were used to model emissions to enhance the capabilities of computer-based vehicle operation simulators. This modeling process is presented in this paper. Vehicle velocity, acceleration, torque at rear axel, and exhaust temperature were used as inputs to the neural networks. For each of the four gaseous emissions considered, one set of training data and one set of validating data were used, both based on the New York City Bus Cycle.
Technical Paper

Parametric Study of 2007 Standard Heavy-Duty Diesel Engine Particulate Matter Sampling System

2007-01-23
2007-01-0060
Heavy-Duty Diesel (HDD) engines' particulate matter (PM) emissions are most often measured quantitatively by weighing filters that collect diluted exhaust samples pre- and post-test. PM sampling systems that dilute exhaust gas and collect PM samples have different effects on measured PM data. Those effects usually contribute to inter-laboratory variance. The U.S. Environmental Protection Agency (EPA)'s 2007 PM emission measurement regulations for the test of HDD engines should reduce variability, but must also cope with PM mass that is an order of magnitude lower than legacy engine testing. To support the design of a 2007 US standard HDD PM emission sampling system, a parametric study based on a systematic Simulink® model was performed. This model acted as an auxiliary design tool when setting up a new 2007 HDD PM emission sampling system in a heavy-duty test cell at West Virginia University (WVU). It was also designed to provide assistance in post-test data processing.
Technical Paper

Effects of Average Driving Cycle Speed on Lean-Burn Natural Gas Bus Emissions and Fuel Economy

2007-01-23
2007-01-0054
Although diesel engines still power most of the heavy-duty transit buses in the United States, many major cities are also operating fleets where a significant percentage of buses is powered by lean-burn natural gas engines. Emissions from these buses are often expressed in distance-specific units of grams per mile (g/mile) or grams per kilometer (g/km), but the driving cycle or route employed during emissions measurement has a strong influence on the reported results. A driving cycle that demands less energy per unit distance than others results in higher fuel economy and lower distance-specific oxides of nitrogen emissions. In addition to energy per unit distance, the degree to which the driving cycle is transient in nature can also affect emissions.
Technical Paper

Dynamic Modal Analysis and Optimization of a Mechanical Sensor Arm Deployment System for a C-130 Aircraft

2004-11-02
2004-01-3129
During structural engineering design two of the most overlooked design facets of a finished product is understanding the behavior characteristics of how the product will react when resonated at its natural frequencies and actually defining and understanding the overall vibration profile responsible for the excitation of the structure. A C-130 mechanical arm/pod system has been developed to accommodate 1,000-pounds of sensor payload deployable in flight from a C-130 Hercules military aircraft (variants B thru J). The mechanical arm/pod system will be subjected to a profile of vibration from numerous sources during deployment and while in the final operating position. A general vibration profile for the mechanical arm/pod will be compiled from the plane’s four T-56-A-15 turboprop engines, the atmospheric turbulence and random gust loads.
Technical Paper

Examination of a Heavy Heavy-Duty Diesel Truck Chassis Dynamometer Schedule

2004-10-25
2004-01-2904
Repeatable measurement of real-world heavy-duty diesel truck emissions requires the use of a chassis dynamometer with a test schedule that reasonably represents actual truck use. A new Heavy Heavy-Duty Diesel Truck (HHDDT) schedule has been created that consists of four modes, termed Idle, Creep, Transient and Cruise. The effect of driving style on emissions from the Transient Mode was studied by driving a 400 hp Mack tractor at 56,000 lbs. test weight in fashions termed “Medium”, “Good”, “Bad”, “Casual” and “Aggressive”. Although there were noticeable differences in the actual speed vs. time trace for these five styles, emissions of the important species oxides of nitrogen (NOx) and particulate matter (PM), varied little with a coefficient of variation (COV) of 5.13% on NOX and 10.68% on PM. Typical NOx values for the HHDDT Transient mode ranged from 19.9 g/mile to 22.75 g/mile. The Transient mode which was the most difficult mode to drive, proved to be repeatable.
Technical Paper

Correlation Study of PM and NOx for Heavy-Duty Vehicles Across Multiple Drive Schedules

2004-10-25
2004-01-3022
When heavy-duty truck emissions are expressed in distance-specific units (such as g/mile), the values may depend strongly on the nature of the test cycle or schedule. Prior studies have compared emissions gained using different schedules and have proposed techniques for translating emissions factor rates between schedules. This paper reviews emissions data from the 5-mode CARB HHDDT Schedule, UDDS Schedule, and a steady-state cycle (AC5080), with reference to each other. NOX and PM emissions are the two components of emissions which are reviewed. A heavy-duty chassis dynamometer was used for emissions characterization along with a full scale dilution tunnel. The vehicle test weights were simulated at 30,000 lbs, 56,000 lbs, and 66,000 lbs. For each vehicle, average data from one mode or cycle have been compared with average data for a different mode or cycle.
Technical Paper

A Configuration for a Continuously Variable Power-Split Transmission in Hybrid-Electric Vehicle Applications

2004-03-08
2004-01-0571
Continuously variable transmissions (CVTs) are usually used in small vehicles due to power limitations on the variable elements. Continuously variable power-split transmissions (CVPST) were developed in order to reduce the fraction of power passing through the variable elements [1,2]. The configuration presented in this paper includes a planetary gear train (PGT), which in combination with the CVT allows the power to be split and therefore increase the power envelope of the system. The PGT also provides a branch that can be used in a hybrid electric vehicle (HEV) operation through an electric motor. A conceptual design of a CVPST for a HEV is presented in this paper. The objectives are to show the different operational modes, with diagrams, perform a power analysis, develop the velocity and force equations and finally show the performance of the system with an example application.
Technical Paper

Rotary Engines – A Concept Review

2003-10-27
2003-01-3206
The basic design of a purely rotary motion engine has potentially many advantages over the conventional piston-crank internal combustion engine. Although only one rotary engine has been successfully placed into production, rotary mechanisms still show promise in the market place. A comprehensive review of rotary engine concepts is presented with an emphasis placed on the last 30 years. Suggestions are made as to where research concentrations should be placed to improve the progress of a rotary engine.
Technical Paper

Emissions from Diesel-Fueled Heavy-Duty Vehicles in Southern California

2003-05-19
2003-01-1901
Few real-world data exist to describe the contribution of diesel vehicles to the emissions inventory, although it is widely acknowledged that diesel vehicles are a significant contributor to oxides of nitrogen (NOx) and particulate matter (PM) in Southern California. New data were acquired during the Gasoline/Diesel PM Split Study, designed to collect emissions data for source profiling of PM emissions from diesel- and gasoline-powered engines in the South Coast (Los Angeles) Air Basin in 2001. Regulated gases, PM and carbon dioxide (CO2) were measured from 34 diesel vehicles operating in the Southern California area. Two were transit buses, 16 were trucks over 33,000 lbs. in weight, 8 were 14,001 lbs. to 33,000 lbs. in weight and 8 were under 14,001 lbs. in weight. The vehicles were also grouped by model year for recruiting and data analysis.
Technical Paper

Measurement of Brake-specific NOX Emissions using Zirconia Sensors for In-use, On-board Heavy-duty Vehicle Applications

2002-05-06
2002-01-1755
Emissions tests for heavy -duty diesel-fueled engines and vehicles are normally performed using engine dynamometers and chassis dynamometers, respectively, with laboratory grade gaseous concentration measurement analyzers and supporting test equipment. However, a considerable effort has been recently expended on developing in-use, on-board tools to measure brake-specific emissions from heavy -duty vehicles with the highest degree of accuracy and precision. This alternative testing methodology would supplement the emissions data that is collected from engine and chassis dynamometer tests. The on-board emissions testing methodology entails actively recording emissions and vehicle operating parameters (engine speed and load, vehicle speed etc.) from vehicles while they are operating on the road. This paper focuses on in-use measurements of NOX with zirconium oxide sensors and other portable NOX detectors.
Technical Paper

Inference of Torque and Power from Heavy-Duty Diesel Engines for On-Road Emissions Monitoring

2002-03-04
2002-01-0614
Increased concerns about the emissions produced from mobile sources have placed an emphasis on the in-use monitoring of on- and off-road vehicles. Measuring the emissions emitted from an in-use vehicle during its operation provides for a rich dataset that is generally too expensive and too time consuming to reproduce in a laboratory setting. Many portable systems have been developed and implemented in the past to acquire in-use emissions data for spark ignited and compression ignited engines. However, the majority of these systems only measured the concentration levels of the exhaust constituents and or reported the results in time-specific (g/s) and or distance-specific (g/km) mass units through knowledge of the exhaust flow. For heavy-duty engines, it is desirable to report the in-use emission levels in brake-specific mass units (g/kW-hr) since that is how the emission levels are reported from engine dynamometer certification testing.
Technical Paper

Measurement of In-Use, On-Board Emissions from Heavy-Duty Diesel Vehicles:Mobile Emissions Measurement System

2001-09-24
2001-01-3643
Emissions tests for heavy-duty diesel-fueled vehicles are normally performed using an engine dynamometer or a chassis dynamometer. Both of these methods generally entail the use of laboratory-grade emissions measurement instrumentation, a CVS system, an environment control system, a dynamometer, and associated data acquisition and control systems. The results obtained from such tests provide a means by which engines may be compared to the emissions standards, but may not be truly indicative of an engine's in-vehicle performance while operating on the road. An alternative to such a testing methodology would be to actively record the emissions from a vehicle while it was operating on-road. A considerable amount of discussion has been focused on the development of on-road emissions measurement systems (OREMS) that would provide for such in-use emissions data collection.
Technical Paper

The Coaxial Cavity Resonator as a RF IC Engine Ignition Source

2001-03-05
2001-01-0987
The Quarter Wave Coaxial Cavity Resonator (QWCCR) plasma igniter is designed, from previous theoretical work, as an ignition source for an internal combustion engine. The present research has explored the implementation of the QWCCR into an internal combustion (IC) engine. The QWCCR design parameters of inner conductor length, loop geometry, and loop position were varied for two igniters of differing operating frequency. Variations of the QWCCR radio frequency (RF) parameters, as a function of engine geometry, were studied by placing the igniter in a combustion chamber and manually varying the crank position. Three identical igniters were fitted with dielectric inserts and the parameters were studied before and after ignition was sustained in a twin-cylinder engine. Optimal resonator geometries were determined. Radio frequency parameter invariance was found with respect to crank angle and piston distance. The first successful IC engine ignition using a QWCCR was achieved.
Technical Paper

An Evaluation of Natural Gas versus Diesel in Medium-Duty Buses

2000-10-16
2000-01-2822
Significant numbers of transit buses now operate on natural gas. With support of the U.S. Department of Energy, the National Renewable Energy Laboratory has evaluated the cost, performance, and emissions of alternative fuel buses around the country. In this study, three natural gas and three closely matched diesel buses were compared. The buses, built by World Trans, were 26′5″long and used 1997 Cummins B-series engines. Particulate matter and oxides of nitrogen emissions from the natural gas buses were significantly lower than those from the diesel buses. However, the diesel buses had lower operating costs and higher fuel efficiency than the natural gas buses.
Technical Paper

Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

1999-05-03
1999-01-1512
Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also be economically competitive with California diesel fuel if produced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels.
X