Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A computational study of hydrogen direct injection using a pre-chamber in an opposed-piston engine

2024-07-02
2024-01-3010
Opposed-piston two-stroke engines offer numerous advantages over conventional four-stroke engines, both in terms of fundamental principles and technical aspects. The reduced heat losses and large volume-to-surface area ratio inherently result in a high thermodynamic efficiency. Additionally, the mechanical design is simpler and requires fewer components compared to conventional four-stroke engines. When combining this engine concept with alternative fuels such as hydrogen and pre-chamber technology, a potential route for carbon-neutral powertrains is observed. To ensure safe engine operation using hydrogen as fuel, it is crucial to consider strict safety measures to prevent issues such as knock, pre-ignition, and backfiring. One potential solution to these challenges is the use of direct injection, which has the potential to improve engine efficiency and expand the range of load operation.
Technical Paper

Experimental Study of Lignin Fuels for CI Engines

2024-06-12
2024-37-0022
This study explores the feasibility of using a sustainable lignin-based fuel, consisting of 44 % lignin, 50 % ethanol, and 6 % water, in conventional compression ignition (CI) marine engines. Through experimental evaluations on a modified small-bore CI engine, we identified the primary challenges associated with lignin-based fuel, including engine startup and shutdown issues due to solvent evaporation and lignin solidification inside the fuel system, and deposit formation on cylinder walls leading to piston ring seizure. To address these issues, we developed a fuel switching system transitioning from lignin-based fuel to cleaning fuel with 85 vol% of acetone, 10 vol% of water and 5 vol% of ignition improving additive, effectively preventing system clogs.
Technical Paper

Fault Detection in Machine Bearings using Deep Learning - LSTM

2024-06-01
2024-26-0473
In today's industrial sphere, machines are the key supporting various sectors and their operations. Over time, due to extensive usage, these machines undergo wear and tear, introducing subtle yet consequential faults that may go unnoticed. Given the pervasive dependence on machinery, the early and precise detection of these faults becomes a critical necessity. Detecting faults at an early stage not only prevents expensive downtimes but also significantly improves operational efficiency and safety standards. This research focuses on addressing this crucial need by proposing an effective system for condition monitoring and fault detection, leveraging the capabilities of advanced deep learning techniques. The study delves into the application of five diverse deep learning models—LSTM, Deep LSTM, Bi LSTM, GRU, and 1DCNN—in the context of fault detection in bearings using accelerometer data. Accelerometer data is instrumental in capturing vital vibrations within the machinery.
Journal Article

Post-Treatment and Hybrid Techniques for Prolonging the Service Life of Fused Deposition Modeling Printed Automotive Parts: A Wear Strength Perspective

2024-04-24
Abstract This study aims to explore the wear characteristics of fused deposition modeling (FDM) printed automotive parts and techniques to improve wear performance. The surface roughness of the parts printed from this widely used additive manufacturing technology requires more attention to reduce surface roughness further and subsequently the mechanical strength of the printed geometries. The main aspect of this study is to examine the effect of process parameters and annealing on the surface roughness and the wear rate of FDM printed acrylonitrile butadiene styrene (ABS) parts to diminish the issue mentioned above. American Society for Testing and Materials (ASTM) G99 specified test specimens were fabricated for the investigations. The parameters considered in this study were nozzle temperature, infill density, printing velocity, and top/bottom pattern.
Technical Paper

Ducted Fuel Injection: Confirmed Re-entrainment Hypothesis

2024-04-09
2024-01-2885
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work.
Technical Paper

Improving the Performance of Diesel Engines by Bore Profile Control under Operating Conditions

2024-04-09
2024-01-2832
The cylinder bore in an engine block is deformed under the assembling stress of the cylinder head and thermal stress. This distortion exacerbates the piston skirt friction and piston slap. Through a numerical and experimental study, this article analyzes the effect of an optimized bore profile on the engine performance. The piston skirt friction was estimated in a three-dimensional elastohydrodynamic (EHD) friction analysis. An ideal cylindrical bore under the rated load condition was assumed as the optimal bore profile that minimized the piston skirt friction without compromising the piston slap. The simulation study revealed that secondary motion of the piston immediately after firing the top dead center can be mitigated by narrowing the piston–bore clearance at the upper position of the cylinder.
Technical Paper

Gap Adjustment Strategy for Electromechanical Brake System Based on Critical Point Identification

2024-04-09
2024-01-2320
Abrasion of the Electromechanical brake (EMB) brake pad during the braking process leads to an increase in brake gap, which adversely affects braking performance. Therefore, it is imperative to promptly detect brake pad abrasion and adjust the brake gap accordingly. However, the addition of extra gap adjustment or sensor detection devices will bring extra size and cost to the brake system. In this study, we propose an innovative EMB gap active adjustment strategy by employing modeling and analysis of the braking process. This strategy involves identifying the contact and separation points of the braking process based on the differential current signal. Theoretical analysis and simulation results demonstrate that this gap adjustment strategy can effectively regulate the brake gap, mitigate the adverse effects of brake disk abrasion, and notably reduce the response time of the braking force output. Monitoring is critical to accurately control EMB clamping force.
Technical Paper

Combustion Analysis of Hydrogen-DDF Mode Based on OH* Chemiluminescence Images

2024-04-09
2024-01-2367
Hydrogen–diesel dual-fuel combustion processes were visualized using an optically accessible rapid compression and expansion machine (RCEM). A hydrogen-air mixture was introduced into the combustion chamber, and a pilot injection of diesel fuel was used as the ignition source. A small amount of diesel fuel was injected as the pilot fuel at injection pressures of 40, 80, and 120 MPa using a common rail injection system. The injection amounts of diesel fuel were varied as 3, 6, and 13 mm3. The amount of hydrogen was manipulated by varying the total excess air ratio (λtotal) at 3 and 4. The RCEM was operated at a constant speed of 900 rpm, and the in-cylinder pressure and temperature at the top dead center (TDC) were set as 5 MPa and 700 K, respectively. The combustion processes were visualized via direct photography and hydroxyl (OH*) chemiluminescence photography using a high-speed camera and an image intensifier.
Technical Paper

Elucidation of Deteriorating Oil Consumption Mechanism Due to Piston Top Ring Groove Wear

2024-04-09
2024-01-2269
The piston and piston ring are used in a severe contact environment in engine durability tests, which causes severe wear to the piston ring groove, leading to significant development costs for countermeasures. Conventionally, in order to ensure functional feasibility through wear on the piston top ring groove (hereinafter “ring groove”), only functional evaluations through actual engine durability testing were performed, and there was an issue in determining the limit value for the actual amount of wear itself. Because of this, the mechanism that may cause wear on the ring groove was clarified through past research, but this resulted in judgment criteria with some leeway from the perspective of functional assurance. To establish judgment criteria, it was necessary to understand both functional effect from ring groove wear and the mechanism behind it.
Technical Paper

Validation of a Two-Parameter Controlled Novel Tribometer for Analysing Durability of Piston Ring-Engine Cylinder Tribo-Pair

2024-04-09
2024-01-2067
The wear of the piston ring-cylinder liner system in gasoline engines is inevitable and significantly impacts fuel economy. Utilizing a custom-built linear reciprocating tribometer, this study assesses the wear resistance of newly developed engine cylinder coatings. The custom device offers a cost-effective means for tribological evaluation, optimizing coating process parameters with precise control over critical operational factors such as normal load and sliding frequency. Unlike conventional commercial tribometers, it ensures a more accurate simulation of the engine cylinder system. However, existing research lacks a comprehensive comparative analysis and procedure to establish precision limits for such modified devices. This study evaluates the custom tribometer's repeatability compared to a commercial wear-testing instrument, confirming its potential as a valuable tool for advanced wear testing on engine cylinder samples.
Technical Paper

Development and Validation of a Reduced Chemical Kinetic Mechanism of Dimethyl Carbonate and Ethylene Carbonate

2024-04-09
2024-01-2085
With the rapid development of electric vehicles, the demands for lithium-ion batteries and advanced battery technologies are growing. Today, lithium-ion batteries mainly use liquid electrolytes, containing organic compounds such as dimethyl carbonate and ethylene carbonate as solvents for the lithium salts. However, when thermal runaway occurs, the electrolyte decomposes, venting combustible gases that could readily be ignited when mixed with air and leading to pronounced heat release from the combustion of the mixture. So far, the chemical behavior of electrolytes during thermal runaway in lithium-ion batteries is not comprehensively understood. Well-validated compact chemical kinetic mechanisms of the electrolyte components are required to describe this process in CFD simulations. In this work, submechanisms of dimethyl carbonate and ethylene carbonate were developed and adopted in the Ansys Model Fuel Library (MFL).
Technical Paper

Combustion Chamber Development for Flat Firedeck Heavy-Duty Natural Gas Engines

2024-04-09
2024-01-2115
The widely accepted best practice for spark-ignition combustion is the four-valve pent-roof chamber using a central sparkplug and incorporating tumble flow during the intake event. The bulk tumble flow readily breaks up during the compression stroke to fine-scale turbulent kinetic energy desired for rapid, robust combustion. The natural gas engines used in medium- and heavy-truck applications would benefit from a similar, high-tumble pent-roof combustion chamber. However, these engines are invariably derived from their higher-volume diesel counterparts, and the production volumes are insufficient to justify the amount of modification required to incorporate a pent-roof system. The objective of this multi-dimensional computational study was to develop a combustion chamber addressing the objectives of a pent-roof chamber while maintaining the flat firedeck and vertical valve orientation of the diesel engine.
Technical Paper

Optimization of the IC Engine Piston Skirt Design Via Neural Network Surrogate and Genetic Algorithms

2024-04-09
2024-01-2603
Internal combustion (IC) engines still power most of the vehicles on road and will likely to remain so in the near future, especially for heavy duty applications in which electrification is typically more challenging. Therefore, continued improvements on IC engines in terms of efficiency and longevity are necessary for a more sustainable transportation sector. Two important design objectives for heavy duty engines with wet liners are to reduce friction loss and to lower the risks of cavitation damages, both of which can be greatly influenced by the piston-liner clearance and the design of the piston skirt. However, engine design optimization is difficult due to the nonlinear interactions between the key design variables and the design objectives, as well as the multi-physics and multi-scale nature of the mechanisms that are relevant to the design objectives.
Technical Paper

Study of the Connection between E-Machine and Gearbox of a Hybrid Powertrain

2024-04-09
2024-01-2592
As part of the development of its new powertrain consisting of two electric motors, a combustion engine and a gearbox, Renault SAS followed an original approach to achieve an assembly with an optimized, robust, and reliable link between the main electric motor and the gearbox. The running operation optimization as well as the high reliability is achieved by processing the following topics: filtration of vibrations and operating jolts; solving of tribological problems specific to splined connections, such as fretting corrosion and abrasive tooth wear; avoidance of potential seizure of elements with cyclic relative slippage under load; and eventually, control of wear and tear on the sealing and damping O-rings, which must accept oscillating translational movements at the same time as torque transfer. The aim of this article is to retrace the main steps taken to achieve the desired reliability and performance targets for this type of product.
Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
Technical Paper

Evaluating the Effects of an Electrically Assisted Turbocharger on Scavenging Control for an Opposed Piston Two Stroke (OP2S) Compression Ignition Engine

2024-04-09
2024-01-2388
Opposed piston two-stroke (OP2S) diesel engines have demonstrated a reduction in engine-out emissions and increased efficiency compared to conventional four-stroke diesel engines. Due to the higher stroke-to-bore ratio and the absence of a cylinder head, the heat transfer loss to the coolant is lower near ‘Top Dead Center.’ The selection and design of the air path is critical to realizing the benefits of the OP2S engine architecture. Like any two-stroke diesel engine, the scavenging process and the composition of the internal residuals are predominantly governed by the pressure differential between the intake and the exhaust ports. Without dedicated pumping strokes, the two-stroke engine architecture requires external devices to breathe.
Technical Paper

Piston Geometries Impact on Spark-Ignition Light-Duty Hydrogen Engine

2024-04-09
2024-01-2613
The European Union aims to be climate neutral by 2050 and requires the transport sector to reduce their emissions by 90%. The deployment of H2ICE to power vehicles is one of the solutions proposed. Indeed, H2ICEs in vehicles can reduce local pollution, reduce global emissions of CO2 and increase efficiency. Although H2ICEs could be rapidly introduced, investigations on hydrogen combustion in ICEs are still required. This paper aims to experimentally compare a flat piston and a bowl piston in terms of performances, emissions and abnormal combustions. Tests were performed with the help of a single cylinder Diesel engine which has been modified. In particular, a center direct injector dedicated to H2 injection and a side-mounted spark plug were installed, and the compression ratio was reduced to 12.7:1. Several exhaust gas measurement systems complete the testbed to monitor exhaust NOx and H2.
Technical Paper

Numerical Evaluation of Injection Parameters on Transient Heat Flux and Temperature Distribution of a Heavy-Duty Diesel Engine Piston

2024-04-09
2024-01-2688
A major concern for a high-power density, heavy-duty engine is the durability of its components, which are subjected to high thermal loads from combustion. The thermal loads from combustion are unsteady and exhibit strong spatial gradients. Experimental techniques to characterize these thermal loads at high load conditions on a moving component such as the piston are challenging and expensive due to mechanical limitations. High performance computing has improved the capability of numerical techniques to predict these thermal loads with considerable accuracy. High-fidelity simulation techniques such as three-dimensional computational fluid dynamics and finite element thermal analysis were coupled offline and iterated by exchanging boundary conditions to predict the crank angle-resolved convective heat flux and surface temperature distribution on the piston of a heavy-duty diesel engine.
X