Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Emissions from Low- and Mid-Level Blends of Anhydrous Ethanol in Gasoline

2019-04-02
2019-01-0997
Typically ethanol is present in gasoline as a 10% blend by volume (E10), although E15, E85 (51 to 83%), and E0 are also available at selected stations. Numerous studies of tailpipe regulated emissions have been conducted to compare emissions from E10 and E0, and there is a growing body of literature addressing blends of E15 and higher. Isolating the effect of ethanol in a study is philosophically difficult, because the ethanol naturally displaces some hydrocarbons, because the ethanol interacts with the remaining gasoline, and because properties of mixing are often nonlinear. Some studies have used splash blending, simply mixing the ethanol with a reference gasoline to produce a blend for comparison to the reference. Others have used match blending, where the objective is to match selected properties of the blend to properties of a reference gasoline.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Quantification of Energy Pathways and Gas Exchange of a Small Port Injection SI Two-Stroke Natural Gas Engine Operating on Different Exhaust Configurations

2018-04-03
2018-01-1278
This paper examines the energy pathways of a 29cc air-cooled two-stroke engine operating on natural gas with different exhaust geometries. The engine was operated at wide-open-throttle at a constant speed of 5400 RPM with ignition adjusted to yield maximum brake torque while the fueling was adjusted to examine both rich and lean combustion. The exhaust configurations examined included an off-the-shelf (OTS) model and two other custom models designed on Helmholtz resonance theory. The custom designs included both single and multi-cone features. Out of the three exhaust systems tested, the model with maximum trapping efficiency showed a higher overall efficiency due to lower fuel short-circuiting and heat transfer. The heat transfer rate was shown to be 10% lower on the new designs relative to OTS model.
Technical Paper

Number Concentration and Size Distributions of Nanoparticle Emissions during Low Temperature Combustion using Fuels for Advanced Combustion Engines (FACE)

2014-04-01
2014-01-1588
Due to tightening emission legislations, both within the US and Europe, including concerns regarding greenhouse gases, next-generation combustion strategies for internal combustion diesel engines that simultaneously reduce exhaust emissions while improving thermal efficiency have drawn increasing attention during recent years. In-cylinder combustion temperature plays a critical role in the formation of pollutants as well as in thermal efficiency of the propulsion system. One way to minimize both soot and NOx emissions is to limit the in-cylinder temperature during the combustion process by means of high levels of dilution via exhaust gas recirculation (EGR) combined with flexible fuel injection strategies. However, fuel chemistry plays a significant role in the ignition delay; hence, influencing the overall combustion characteristics and the resulting emissions.
Technical Paper

Chassis Dynamometer Emissions Characterization of a Urea-SCR Transit Bus

2012-06-01
2011-01-2469
West Virginia University characterized the emissions and fuel economy performance of a 30-foot 2010 transit bus equipped with urea selective catalytic reduction (u-SCR) exhaust aftertreatment. The bus was exercised over speed-time driving schedules representative of both urban and on-highway activity using a chassis dynamometer while the exhaust was routed to a full-scale dilution tunnel with research grade emissions analyzers. The Paris speed-time driving schedule was used to represent slow urban transit bus activity while the Cruise driving schedule was used to represent on-highway activity. Vehicle weights representative of both one-half and empty passenger loading were evaluated. Fuel economy observed during testing with the urban driving schedule was significantly lower (55%) than testing performed with the on-highway driving schedule.
Journal Article

Diesel Exhaust Aftertreatment with Scrubber Process: NOx Destruction

2012-05-15
2011-01-2440
Oxides of nitrogen (NOx) emissions, produced by engines that burn fuels with atmospheric air, are known to cause negative health and environmental effects. Increasingly stringent emissions regulations for marine engines have caused newer engines to be developed with inherent NOx reduction technologies. Older marine engines typically have a useful life of over 20 years and produce a disproportionate amount of NOx emissions when compared with their newer counterparts. Wet scrubbing as an aftertreatment method for emissions reduction was applied to ocean-going marine vessels for the reduction of sulfur oxides (SOx) and particulate matter (PM) emissions. The gaseous absorption process was explored in the laboratory as an option for reducing NOx emissions from older diesel engines of harbor craft operating in ports of Houston and Galveston. A scrubber system was designed, constructed, and evaluated to provide the basis for a real-world design.
Technical Paper

Relationship between Carbon Monoxide and Particulate Matter Levels across a Range of Engine Technologies

2012-04-16
2012-01-1346
Relationships between diesel particulate matter (PM) mass and gaseous emissions mass produced by engines have been explored to determine whether any gaseous species may be used as surrogates to infer PM quantitatively. It was recognized that sulfur content of fuel might independently influence PM mass, since PM historically is composed of elemental carbon, organic carbon, sulfuric acid, ash and wear particles. Previous research has suggested that PM may be correlated with carbon monoxide (CO) for an engine that is exercised through a variety of speed and load cycles, but that the correlation does not extend to a group of engines. Large databases from the E-55/59 and Gasoline/Diesel PM Split programs were employed, along with the IBIS bus emissions database and several additional data sets for on- and off-road engines to examine possible relationships.
Journal Article

The Effect of Cetane Improvers and Biodiesel on Diesel Particulate Matter Size

2011-04-12
2011-01-0330
Heavy-duty diesel engines (HDDE), because of their widespread use and reputation of expelling excessive soot, have frequently been held responsible for excessive amounts of overall environmental particulate matter (PM). PM is a considerable contributor to air pollution, and a subject of primary concern to health and regulatory agencies worldwide. The U.S. Environmental Protection Agency (EPA) has provided PM emissions regulations and standards of measurement techniques since the 1980's. PM standards set forth by the EPA for HDDEs are based only on total mass, instead of size and/or concentration. The European Union adopted a particle number emission limit, and it may influence the U.S. EPA to adopt particle number or size limits in the future. The purpose of this research was to study the effects biodiesel blended fuel and cetane improvers have on particle size and number.
Technical Paper

Effects of Oil Aging on Laboratory Measurement of Emissions from a Legacy Heavy-duty Diesel Engine

2011-04-12
2011-01-1163
Diesel engines are highly reliable, durable and are used for a wide range of applications with low fuel usage owing to its higher thermal efficiency compared to other mobile power sources. Heavy-duty diesel engines are used for both on-road and off-road applications and dominate the heavy-duty engine segment of the United States transportation market. Due to their high reliability, there are considerable numbers of on-road legacy heavy-duty diesel engine fleets still in use in the United States. These engines are relatively higher oxides of nitrogen (NOx) and particulate matter (PM) producers than post 2007 model year diesel engines. There have been various emission certification or verification programs which are carried out in states like California and Texas for different aftermarket retrofit devices, fuels and additive technologies for reducing NOx and PM emissions from these legacy diesel engines.
Journal Article

An Empirical Approach in Determining the Effect of Road Grade on Fuel Consumption from Transit Buses

2010-10-05
2010-01-1950
Transit buses contribute a meager amount to the U.S. criteria pollutant and greenhouse gas (GHG) inventory, but they attract a lot of attention from the public and from local government, due to their nature of operation. Transit bus fleets are often employed for the introduction of advanced heavy-duty vehicle technology and the formulation of new performance models. Emissions and fuel consumption data, gained using a chassis dynamometer, are often used to evaluate performance of these buses. However, the effect of road grade on fuel consumption and emissions most often is not accounted for in chassis dynamometer characterization. Grade effect on transit buses' fuel consumption was investigated using the road-load equation. It was observed that two parameters, including the type of terrain that buses traverse and the percentage of grade for that terrain, needed to be determined for this investigation.
Technical Paper

Modeling and Validation of an Over-the-Road Truck

2010-10-05
2010-01-2001
Heavy-duty trucks are an important sector to evaluate when seeking fuel consumption savings and emissions reductions. With fuel costs on the rise and emissions regulations becoming stringent, vehicle manufacturers find themselves spending large amounts of capital improving their products in order to be compliant with regulations. The Powertrain System Analysis Toolkits (PSAT), developed by the Argonne National Laboratory (ANL), is a simulation tool that helps mitigate costs associated with research and automotive system design. While PSAT has been widely used to predict the fuel consumption and exhaust emissions of conventional and hybrid light-duty vehicles, it also may be employed to test heavy-duty vehicles. The intent of this study was to develop an accurate model that predicts emissions and fuel economy for heavy-duty vehicles for use within PSAT.
Technical Paper

Comparative Emissions from Diesel and Biodiesel Fueled Buses from 2002 to 2008 Model Years

2010-10-05
2010-01-1967
Fuel economy and regulated emissions were measured from eight forty-foot transit buses operated on petroleum diesel and a “B20” blend of 80% diesel fuel and 20% biodiesel by volume. Use of biodiesel is attractive to displace petroleum fuel and reduce an operation's carbon footprint. Usually it is assumed that biodiesel will also reduce particulate matter (PM) emissions relative to those of petroleum diesel. Model years of the vehicles evaluated were newer 2007-08 Gillig low-floor buses, 2005 Gillig Phantom buses, and a 2002 Gillig Phantom bus. Engine technology represented three different emissions standards, and included buses with OEM diesel particulate filters. Each bus was evaluated using two transient speed-time schedules, the Orange County Transit Authority (OCTA) driving schedule which represents moderate speed urban/suburban operation and the Urban Dynamometer Driving Schedule (UDDS) which represents a mix of suburban and higher speed on-highway operation.
Technical Paper

Biodiesel Blend Emissions of a 2007 Medium Heavy Duty Diesel Truck

2010-10-05
2010-01-1968
Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel (PD). Emissions differences between vehicles operated on biodiesel blends and on diesel have been published previously, but data do not cover the latest engine technologies. Prior studies have shown that biodiesel offers advantages in reducing particulate matter, with either no advantage or a slight disadvantage for oxides of nitrogen emissions. This paper describes a recent study on the emissions impact of two biodiesel blends B20A, made from 20% animal fat (tallow) biodiesel and 80% PD, and B20B, obtained from 20% soybean biodiesel and 80% PD. These blends used the same PD fuel for blending and were contrasted with the same PD fuel as a reference. The research was conducted on a 2007 medium heavy-duty diesel truck (MHDDT), with an engine equipped with Exhaust Gas Recirculation (EGR) and a Diesel Particulate Filter (DPF).
Technical Paper

Nano Particulate Matter Evolution in a CFR1065 Dilution Tunnel

2009-11-02
2009-01-2672
Dual primary full-flow dilution tunnels represent an integral part of a heavy-duty transportable emissions measurement laboratory designed and constructed to comply with US Code of Federal Regulations (CFR) 40 Part 1065 requirements. Few data exist to characterize the evolution of particulate matter (PM) in full scale dilution tunnels, particularly at very low PM mass levels. Size distributions of ultra-fine particles in diesel exhaust from a naturally aspirated, 2.4 liter, 40 kW ISUZU C240 diesel engine equipped with a diesel particulate filter (DPF) were studied in one set of standard primary and secondary dilution tunnels with varied dilution ratios. Particle size distribution data, during steady-state engine operation, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. Measurements were made at four positions that spanned the tunnel cross section after the mixing orifice plate for the primary dilution tunnel and at the outlet of the secondary dilution tunnel.
Journal Article

The Influence of Accelerator Pedal Position Control during Transient Laboratory Testing on Heavy Duty Diesel Engines

2009-04-20
2009-01-0619
Pollutants are a major issue of diesel engines, with oxides of nitrogen (NOx) and airborne total particulate matter (TPM) of primary concern. Current emission standards rely on laboratory testing using an engine dynamometer with a standard test procedure. Results are reported as an integrated value for emissions from a transient set of engine speed and load conditions over a length of time or a set of prescribed speed-load points. To be considered a valid test by the US EPA, the measured engine speed and load are compared to the prescribed engine speed and load and must be within prescribed regression limits.
Technical Paper

and Repeatability of Transient Heat Release Analysis for Heavy Duty Diesel Engines

2009-04-20
2009-01-1125
Reduced emissions, improved fuel economy, and improved performance are a priority for manufacturers of internal combustion engines. However, these three goals are normally interrelated and difficult to optimize simultaneously. Studying the experimental heat release provides a useful tool for combustion optimization. Heavy-duty diesel engines are inherently transient, even during steady state operation engine controls can vary due to exhaust gas recirculation (EGR) or aftertreatment requirements. This paper examines the heat release and the derived combustion characteristics during steady state and transient operation for a 1992 DDC series 60 engine and a 2004 Cummins ISM 370 engine. In-cylinder pressure was collected during repeat steady state SET and the heavy-duty transient FTP test cycles.
Journal Article

Crankcase Particulate Emissions from Diesel Engines

2008-06-23
2008-01-1751
In 2007, US EPA implemented the rule that the crankcase emissions be added to the tailpipe emissions to determine the total emissions from a diesel engine if the crankcase were not closed, but few data exist to quantify crankcase emissions from earlier model diesel engines. This paper presents the results of a study on the measurement of the size distribution and number concentration of particulate matter (PM) emitted from the crankcase vents from four different diesel engines under different engine speeds and loads. The engines used in the study were a 1992 Detroit Diesel Series 60, a 1996 Caterpillar 3406E, a 1997 Cummins B5.9 and a 1995 Mack E7-400. The Detroit Diesel engine was tested on an engine dynamometer and crankcase and tailpipe particulates were observed at varying engine speeds and loads. The other three engines were mounted in vehicles, and crankcase PM was observed at several engine speeds with no external load.
Technical Paper

Emissions from a Legacy Diesel Engine Exercised through the ACES Engine Test Schedule

2008-06-23
2008-01-1679
Most transient heavy duty diesel emissions data in the USA have been acquired using the Federal Test Procedure (FTP), a heavy-duty diesel engine transient test schedule described in the US Code of Federal Regulations. The FTP includes both urban and freeway operation and does not provide data separated by driving mode (such as rural, urban, freeway). Recently, a four-mode engine test schedule was created for use in the Advanced Collaborative Emission Study (ACES), and was demonstrated on a 2004 engine equipped with cooled Exhaust Gas Recirculation (EGR). In the present work, the authors examined emissions using these ACES modes (Creep, Cruise, Transient and High-speed Cruise) and the FTP from a Detroit Diesel Corporation (DDC) Series 60 1992 12.7 liter pre-EGR engine. The engine emissions were measured using full exhaust dilution, continuous measurement of gaseous species, and filter-based Particulate Matter (PM) measurement.
Journal Article

Summary of In-use NOx Emissions from Heavy-Duty Diesel Engines

2008-04-14
2008-01-1298
As part of the 1998 Consent Decrees concerning alternative ignition strategies between the six settling heavy-duty diesel engine manufacturers and the United States government, the engine manufacturers agreed to perform in-use emissions measurements of their engines. As part of the Consent Decrees, pre- (Phase III, pre-2000 engines) and post- (Phase IV, 2001 to 2003 engines) Consent Decree engines used in over-the-road vehicles were tested to examine the emissions of oxides of nitrogen (NOx) and carbon dioxide (CO2). A summary of the emissions of NOx and CO2 and fuel consumption from the Phase III and Phase IV engines are presented for 30 second “Not-to-Exceed” (NTE) window brake-specific values. There were approximately 700 Phase III tests and 850 Phase IV tests evaluated in this study, incorporating over 170 different heavy duty diesel engines spanning 1994 to 2003 model years. Test vehicles were operated over city, suburban, and highway routes.
Technical Paper

Low Temperature Combustion with Thermo-Chemical Recuperation

2007-10-29
2007-01-4074
The key to overcoming Low Temperature Combustion (LTC) load range limitations is based on suitable control over the thermo-chemical properties of the in-cylinder charge. The proposed alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel, with different autoignition characteristics, is a reformed product of the primary fuel in the tank. It is proposed in this paper that the secondary fuel is produced using Thermo-Chemical Recuperation (TCR) with steam/fuel reforming. The steam/fuel mixture is heated by sensible heat from the engine exhaust gases in the recuperative reformer, where the original hydrocarbon reacts with water to form a hydrogen rich gas mixture. An equilibrium model developed by Gas Technology Institute (GTI) for n-heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures.
X