Refine Your Search

Topic

Author

Search Results

Technical Paper

Stability Monitoring Algorithm with a Combined Slip Tire Model for Maximized Cornering Speed of High-Speed Autonomous Driving

2023-04-11
2023-01-0684
This paper presents a stability monitoring algorithm with a combined slip tire model for maximized cornering speed of high-speed autonomous driving. It is crucial to utilize the maximum tire force with maintaining a grip driving condition in cornering situations. The model-free cruise controller has been designed to track the desired acceleration. The lateral motion has been regulated by the sliding mode controller formulated with the center of percussion. The controllers are suitable for minimizing the behavior errors. However, the high-level algorithm is necessary to check whether the intended motion is inside of the limit boundaries. In extreme diving conditions, the maximum tire force is limited by physical constraints. A combined slip tire model has been applied to monitor vehicle stability. In previous studies, vehicle stability was evaluated only by vehicle acceleration.
Technical Paper

Data-driven Trajectory Planning of Lane Change Maneuver for Autonomous Driving

2023-04-11
2023-01-0687
This paper presents a methodology of trajectory planning for the surrounding-aware lane change maneuver of autonomous vehicles based on a data-driven method. The lateral motion is planned by sampling candidate patterns which are defined based on quintic polynomial functions over time. Based on the cost evaluation among the sampled candidates, the optimal lateral motion pattern is selected as a reference and tracked by the controller. The longitudinal motion is planned and controlled using Model Predictive Control (MPC) which is an optimal control method designed considering the surrounding traffic information. To realize the lane change motion similar to the human driving behavior in the surrounding traffic situation, the human driving pattern is modeled in the form of motion parameters and considered in planning the lateral and longitudinal motion.
Technical Paper

Hierarchical Motion Planning and Control Algorithm of Autonomous Racing Vehicles for Overtaking Maneuvers

2023-04-11
2023-01-0698
This paper describes a hierarchical motion planning and control framework for overtaking maneuvers under racing circumstances. Unlike urban or highway autonomous driving conditions, race track driving requires longer prediction and planning horizons in order to respond to upcoming corners at high speed. In addition, the subject vehicle should determine the optimal action among possible driving modes when opponent vehicles are present. In order to meet these requirements and secure real time performance, a hierarchical architecture for decision making, motion planning, and control for an autonomous racing vehicle is proposed. The supervisor determines whether the subject vehicle should stay behind the preceding vehicle or overtake, and its direction when overtaking. Next, a high level trajectory planner generates the desired path and velocity profile in a receding horizon fashion.
Technical Paper

High-Definition Map Based Motion Planning, and Control for Urban Autonomous Driving

2021-04-06
2021-01-0098
This paper presents motion planning and control algorithm for urban automated driving using high-definition(HD) map. Many automakers have developed and commercialized advanced driver assistance system(ADAS) based on vision-only lane extraction in motorway environments. Compared to the motorway environments where the lane is continuous and clearly visible, however, in urban roads, degradation of the lane quality such as lane occlusion and lane loss occurs frequently. This leads to the poor quality of the local guide path for the autonomous vehicles with vision-only lane extraction. Global HD map is used to provide the lane information continuously instead of vision-only lane extraction. With the existence of global position of host vehicle and the HD map, the proposed sequential algorithm performs the lane keeping and lane changing decision and control with safety margin in multi-vehicle situation.
Technical Paper

Estimation of Side Slip Angle Interacting Multiple Bicycle Models Approach for Vehicle Stability Control

2019-04-02
2019-01-0445
This paper presents an Interacting Multiple Model (IMM) based side slip angle estimation method to estimate side slip angle under various road conditions for vehicle stability control. Knowledge of the side slip angle is essential enhancing vehicle handling and stability. For the estimation of the side slip angles in previous researches, prior knowledge of tire parameters and road conditions have been employed, and sometimes additional sensors have been needed. These prior knowledge and additional sensors, however, necessitates many efforts and make an application of the estimation algorithm difficult. In this paper, side slip angle has been estimated using on-board vehicle sensors such as yaw rate and lateral acceleration sensors. The proposed estimation algorithm integrates the estimates from multiple Kalman filters based on the multiple models with different parameter set.
Technical Paper

Rear-Wheel Steering Control for Enhanced Maneuverability of Vehicles

2019-04-02
2019-01-1238
This paper proposes a rear-wheel steering control method that can modify and improve the vehicle lateral response without tire model and parameter. The proposed control algorithm is a combination of steady-state and transient control. The steady state control input is designed to modify steady-state yaw rate response of the vehicle, i.e. understeer gradient of the vehicle. The transient control input is a feedback control to improve the transient response when the vehicle lateral behavior builds up. The control algorithm has been investigated via computer simulations. Compared to classical control methods, the proposed algorithm shows good vehicle lateral response such as small overshoot and fast response. Specifically, the proposed algorithm can alleviate stair-shaped response of the lateral acceleration.
Technical Paper

Integrated Chassis Control for Vehicle Stability under Various Road Friction Conditions

2018-04-03
2018-01-0552
This paper presents an integrated chassis control method for vehicle stability under various road friction conditions without information on tire-road friction. For vehicle stability, vehicle with an integrated chassis control needs to cope with the various road friction conditions. One of the chassis control method under various road conditions is to determine and/or limit control inputs based on tire-road friction coefficient. The tire-road friction coefficient, however, is difficult to estimate and still a challenging task. The key idea for the proposed method without the estimation of the tire-road friction coefficient is to analyze and control vehicle states based on a tire slip angle - tire force phase plane, i.e. based on these vehicle responses: tire forces and tire slip angles of front/rear wheels.
Technical Paper

Model Predictive Control based Automated Driving Lane Change Control Algorithm for Merge Situation on Highway Intersection

2017-03-28
2017-01-1441
This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
Technical Paper

Development of Integrated Chassis Control for Limit Handling

2016-04-05
2016-01-1638
This paper presents the integrated chassis control(ICC) of four-wheel drive(4WD), electronic stability control(ESC), electronic control suspension(ECS), and active roll stabilizer(ARS) for limit handling. The ICC consists of three layers: 1) a supervisor determines target vehicle states; 2) upper level controller calculates generalized forces; 3) lower level controller, which is contributed in this paper, optimally allocates the generalized force to chassis modules. The lower level controller consists of two integrated parts, 1) longitudinal force control part (4WD/ESC) and 2) vertical force control part (ECS/ARS). The principal concept of both algorithms is optimally utilizing the capability of the each tire by monitoring tire saturation, with tire combined slip. By monitoring tire saturation, 4WD/ESC integrated system minimizes the sum of the tire saturation, and ECS/ARS integrated system minimizes the variance of the tire saturation.
Journal Article

Automated Driving Control in Safe Driving Envelope based on Probabilistic Prediction of Surrounding Vehicle Behaviors

2015-04-14
2015-01-0314
This paper presents an automated driving control algorithm for the control of an autonomous vehicle. In order to develop a highly automated driving control algorithm, one of the research issues is to determine a safe driving envelope with the consideration of probable risks. While human drivers maneuver the vehicle, they determine appropriate steering angle and acceleration based on the predictable trajectories of the surrounding vehicles. Therefore, not only current states of surrounding vehicles but also predictable behaviors of that should be considered in determining a safe driving envelope. Then, in order to guarantee safety to the possible change of traffic situation surrounding the subject vehicle during a finite time-horizon, the safe driving envelope over a finite prediction horizon is defined in consideration of probabilistic prediction of future positions of surrounding vehicles.
Journal Article

A Method of Frequency Content Based Analysis of Driving Braking Behavior

2015-04-14
2015-01-1564
Typically, when one thinks of advanced driver assistance systems (ADAS), systems such as Forward Collision Warning (FCW) and Collision Imminent Braking (CIB) come to mind. In these systems driver assistance is provided based on knowledge about the subject vehicle and surrounding objects. A new class of these systems is being implemented. These systems not only use information on the surrounding objects but also use information on the driver's response to an event, to determine if intervention is necessary. As a result of this trend, an advanced level of understanding of driver braking behavior is necessary. This paper presents an alternate method of analyzing driver braking behavior. This method uses a frequency content based approach to study driver braking and allows for the extraction of significantly more data from driver profiles than traditionally would have been done.
Journal Article

A Tire Slip-Angle based Speed Control Driver Model for Analysis of Vehicle-Driver Systems at Limit Handling

2015-04-14
2015-01-1566
This paper presents a tire slip-angle based speed control race driver model. In developing a chassis control system for enhancement of high-speed driving performance, analysis of the vehicle-driver interaction at limit handling is one of the main research issues. Thus, a driver model which represents driving characteristics in a racing situation is required to develop a chassis control system. Since a race driver drives a vehicle as fast as possible on a given racing line without losing control, the proposed driver model is developed to ensure a lateral stability. In racing situation, one of the reasons which cause the lateral instabilities is an excessive corner-entry speed. The lateral instability in that moment is hard to handle with only a steering control. To guarantee the lateral stability of the vehicle while maximizing a cornering speed, a desired speed is determined to retain a tire slip-angle that maximizes lateral tire forces without front tire saturation.
Technical Paper

Robust Mode Predictive Control for Lane Change of Automated Driving Vehicles

2015-04-14
2015-01-0317
This paper describes a robust Model Predictive Control (MPC) framework of lane change for automated driving vehicles. In order to develop a safe lane change for automated driving, the driving mode and lane change direction are determined considering environmental information, sensor uncertainties, and collision risks. The safety margin is calculated using predicted trajectories of surround and subject vehicles. The MPC based combined steering and longitudinal acceleration control law has been designed with extended bicycle model over a finite time horizon. A reachable set of vehicle state is calculated on-line to guarantee that MPC state and input constraints are satisfied in the presence of disturbances and uncertainties. The performance of the proposed algorithm has been conducted simulation studies.
Journal Article

Braking Behavior of Truck Drivers in Crash Imminent Scenarios

2014-09-30
2014-01-2380
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Design Challenges in the Development of a Large Vehicle Inertial Measurement System

2014-04-01
2014-01-0096
The (Vehicle Inertia Parameter Evaluation Rig) VIPER II is a full vehicle mass and inertia parameter measurement machine. The VIPER II expands upon the capabilities of its predecessor and is capable of measuring vehicles with a mass of up to 45,360 kg (100,000 lb), an increase in capacity of 18,100 kg (40,000 lb). The VIPER II also exceeds its predecessor in both the length and width of vehicles it can measure. The VIPER II's maximum vehicle width is 381 cm (150 in) an increase of 76 cm (30 in) and maximum distance from the vehicle CG to the outer most axle is 648 cm (255 in) an additional 152 cm (60 in) The VIPER II is capable of performing measurements including vehicle CG height, pitch, roll, and yaw moments of inertia and the roll/yaw cross product of inertia. While being able to measure both heavier and larger vehicles, the VIPER II is designed to maintain a maximum error of 3% for all inertia measurements and 1% for CG height.
Technical Paper

Modeling and Validation of ABS and RSC Control Algorithms for a 6×4 Tractor and Trailer Models using SIL Simulation

2014-04-01
2014-01-0135
A Software-in-the-Loop (SIL) simulation is presented here wherein control algorithms for the Anti-lock Braking System (ABS) and Roll Stability Control (RSC) system were developed in Simulink. Vehicle dynamics models of a 6×4 cab-over tractor and two trailer combinations were developed in TruckSim and were used for control system design. Model validation was performed by doing various dynamic maneuvers like J-Turn, double lane change, decreasing radius curve, high dynamic steer input and constant radius test with increasing speed and comparing the vehicle responses obtained from TruckSim against field test data. A commercial ESC ECU contains two modules: Roll Stability Control (RSC) and Yaw Stability Control (YSC). In this research, only the RSC has been modeled. The ABS system was developed based on the results obtained from a HIL setup that was developed as a part of this research.
Technical Paper

Correlation of Subjective and Objective Measures of On-Center Handling

2014-04-01
2014-01-0128
This paper presents a methodology of correlation between subjective and objective measures of vehicle on-center handling performance. The subjective measure is a professional test driver's rating of vehicle handling, while the objective measure assesses the handling performance via vehicle dynamic responses. Vehicle test data obtained from field testing has been analyzed to investigate links between the objective and subjective measures. Fifty-six physical parameters have been derived from on-centering hysteresis curves. Statistical tools are employed to obtain good correlation between driver rating and physical parameters. Using an interaction formula, a statistical model which relates the driver rating and principal physical parameters has been obtained. The proposed methodology will be used to show the physical parameters influence on subjective assessment and even to predict the subjective assessment of a vehicle handling performance.
Journal Article

Advanced Control Strategies for a Roll Simulator - A Feedback Linearization Technique Explored

2013-04-08
2013-01-0683
This paper presents a feedback linearization control technique as applied to a Roll Simulator. The purpose of the Roll Simulator is to reproduce in-field rollovers of ROVs and study occupant kinematics in a laboratory setting. For a system with known parameters, non-linear dynamics and trajectories, the feedback linearization algorithm cancels out the non-linearities such that the closed-loop dynamics behave in a linear fashion. The control inputs are computed values that are needed to attain certain desired motions. The computed values are a form of inverse dynamics or feed-forward calculation. With increasing system eigenvalue, the controller exhibits greater response time. This, however, puts a greater demand on the translational actuator. The controller also demonstrates that it is able to compensate for and reject a disturbance in force level.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
X